首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Newborn BALB/c mouse brain was cultured as disaggregated cells after serial trypsin dissociations. The ontogeny of the cultures was followed by assays of cell number, deoxyribonucleic acid, and protein content and by the activities of three enzymes considered to be markers of neuronal differentiation. Aliquots of the freshly dissociated cells were assayed for choline acetylase, acetylcholinesterase, and glutamic acid decarboxylase activities and compared with intact brain. The percentages of recovery of activities, expressed as14C product formed per mg of protein per 10 min, at pH 6.8 and 37°C, were 37% for choline acetylase, 54% for acetylcholinesterase, and 24% for glutamic acid decarboxylase. The remainder of the freshly dissociated cells were placed into culture; enzyme assays were performed as the cells multiplied and then when the cultures became static. Choline acetylase activity increased as the cells rapidly divided, and glutamic acid decarboxylase activity increased only after the cultures became confluent. Under the culture conditions, acetylcholinesterase was not induced, despite active synthesis of acetylcholine. Neuroblastoma clone N18, C1300 cell line, was grown in cell culture, and the activity of acetylcholinesterase was measured as the cells multiplied and came to confluency. The specific activity of mouse neuroblastoma acetylcholinesterase increased 25-fold when the rate of cell division was restricted. The rate of cell division could be regulated by adjusting the serum concentration. By removing fetal calf serum during the growth period, cell division ceased, and acetylcholinesterase activity was significantly and rapidly induced. Choline-O-acetyltransferase specific activity was measured in rapidly dividing and in static cultures. Its specific activity was highest in nondividing cultures, compared to cultures containing actively dividing cells (6-fold), and the specific activity of thymidylate synthetase was increased 2.5-fold in actively dividing cultures, compared to static cultures. Glioblastoma cells obtained from the rat astrocytoma, clone C6, were grown in culture, and glucose metabolism was measured in control cultures, and in cultures containing norepinephrine (0.017 mg per ml). Norepinephrine produced a 50% inhibition in the incorporation ofd-[14C]glucose. Cells incubated for 2 hr in the presence ofd-[14C]glucose, washed and then incubated in control medium or in medium containing norepinephrine, resulted in the release of greater than 50% of radioactive metabolites in the norepinephrine treated plates. Norepinephrine caused a 50% increase in14CO2 production in glioblastoma cells incubated withd-[1-14C]glucose. Norepinephrine, under similar conditions, did not affect the metabolism of glucose in clone C46, C1300 mouse neuroblastoma cells. Portions of this work were supported by a research grant (6-444946-58605) from the American Cancer Society.  相似文献   

2.
The possible role of polyamines in the covalent modification of cellular protein(s) was investigated by studying the metabolic labeling of NB-15 mouse neuroblastoma cells by [14C]putrescine in fresh Dulbecco's medium followed by separation of cellular proteins through sodium dodecyl sulfate-polyacrylamide gel electrophoreses. Under such incubation conditions, a single protein band with an apparent molecular weight of 18 000 was radioactively labeled. [14C]Spermidine also specifically labeled this protein. The majority of the radioactivity covalently linked to the 18-kDa protein was recovered as hypusine. The radioactive labeling of this protein was stimulated 1.3-fold by 1 mM dibutyryl cAMP and 2.8-fold by 4% fetal calf serum. Fetal calf serum also stimulated the labeling of many other cellular proteins. This may be due to the conversion of putrescine to amino acids via the formation of γ-aminobutyric acid. Aminoguanidine, a potent inhibitor of diamine oxidase, completely inhibited the fetal calf serum-stimulated labeling of these cellular proteins but had no effect on the labeling of the 18-kDa protein. The specific labeling of the 18-kDa protein by [14C]putrescine occurred in various mammalian cells examined including the N-18 mouse neuroblastoma cells, 3T3-L1 murine preadipocytes, and H-35 rat hepatoma cells. The specificity of labeling of the apparently ubiquitous 18-kDa protein and the stimulation of this labeling by fetal calf serum suggest that this protein may be important in mediating some of the actions of polyamines in cell growth regulation.  相似文献   

3.
Biogenic amines in cultured neuroblastoma and astrocytoma cells   总被引:2,自引:0,他引:2       下载免费PDF全文
The presence of biogenic amines in cultured cells of mouse neuroblastoma C-1300 (clone NB-2a) was suggested by fluorescence-microscope histochemistry. Incubation in media containing L-[14C]tyrosine and L-[14C]tryptophan for 24 h, followed by high-voltage electrophoresis, radiochromatogram scanning, and scintillation counting, confirmed the presence of [14C]dopamine, [14C]norepinephrine, [14C]epinephrine, [14C]serotonin, [14C]tyramine, and [14C]octopamine. Dopamine, norepinephrine, epinephrine, and serotonin were demonstrated spectrophotofluorometrically in concentrations, expressed as micrograms amine per milligram protein, of 1.19, 0.027, 0.038, and 0.148, respectively, for cells in a stationary growth phase. Fluorescence-microscope histochemistry also suggested the presence of biogenic amines in cultured astrocytoma cells (cell line C6). Spectrophotofluorometric assay of cells in a stationary growth phase demonstrated intracellular dopamine, norepinephrine, epinephrine, and serotonin in concentrations significantly lower than those of neuroblastoma cells.  相似文献   

4.
Differential assay for choline acetyltransferase   总被引:7,自引:0,他引:7  
A rapid and sensitive radiochemical assay for choline acetyltransferase (EC 2.3.1.6) is reported. The assay allows for the fact that during incubation of [14C]acetyl-CoA and choline with a cell homogenate, at least one product is formed besides [14C]acetylcholine, which passes an anion exchange column. In contrast to [14C]acetylcholine, this major contaminant ([14C]acetylcarnitine) is not hydrolyzed apparently by Electrophorus acetylcholinesterase. Therefore, two types of assays are performed, the one in the presence of an acetylcholinesterase inhibitor, the other in the presence of acetylcholinesterase from Electrophorus. After passing the reaction mixtures over anion exchange columns, the radioactivities of the effluents are determined. Their difference is proportional to the choline acetyltransferase activity.  相似文献   

5.
Ribose 1-phosphate has been measured in rat tissues by an enzymatic radioactive assay. The sugar phosphate is converted into [14C]inosine via the two following combined reactions: ribose 1-phosphate + [14C]adenine ? [14C]adenosine + phosphate (adenosine phosphorylase); [14C]adenosine + H2O → [14C]inosine + NH3 (adenosine deaminase). Tissue extracts are incubated in the presence of excess [14C]adenine. The radioactivity of inosine, separated by a thin-layer chromatographic system, is a measure of ribose 1-phosphate present in tissue extracts. Liver was found to contain the highest level of ribose 1-phosphate (ca. 800 nmol/g wet wt).  相似文献   

6.
When glioblastoma and neuroblastoma cells are mixed, an inhibition of 14CO2 evolution from [1-14C]-glucose occurs. This does not occur when Hela and Glioblastoma cells or Hela and neuroblastoma cells are mixed. Mixing the cells has no effect on the incorporation of [1-14C] glucose.  相似文献   

7.
The metabolism of neuroblastoma cell glycoproteins was examined using l-[3H]fucose. Incubation of monolayer cultures with [3H]fucose resulted in a rapid uptake of the radioactive precursor and its incorporation into acid-insoluble macromolecules. Less than 3% of the [3H]fucose that was isolated from neuroblastoma cells by trichloroacetic acid precipitation was associated with glycolipids. The metabolism of fucosylated macromolecules was studied in cells which were labelled to a steady state, and then reincubated under conditions which limited reutilization of the radioactive precursor (40 mM unlabelled fucose). During reincubation of the cells, we observed a rapid metabolism (27% by 2 h)_ of the prelabelled macromolecules which stabilized within a cell generation time to give an overall rate of turnover of 9%. This rapid loss of radioactivity from the cells was not due to exocytosis since less than 4% of the [3H]-fucose was lost into the media as macromolecules during a 5 h reincubation period. The presence of 40 mM fucose in the media did not affect cell growth until after 24 h of incubation or cellular synthesis until after 15 h of incubation. When the metabolism of neuroblastoma cell glycoproteins was measured in the presence of 1.8 · 10?4 M cycloheximide, there appeared to be a less rapid decrease in cell-associated specific activity, and an increased reutilization of [3H]fucose. Although the major proportion of the radioactivity remained as [3H]fucose, extensive incubation of neuroblastoma cells with this radioactive precursor led to increased amounts of tritium associated with other cellular components. However, a rapid rate of glycoprotein metabolism could also be demonstrated with cells incubated with [4C]fucose. This eliminated the possibility that the above results were restricted to the tritiated precursor and merely a reflection of hydrogen-tritium exchange.  相似文献   

8.
9.
An improved radioactive assay has been developed for serine transhydroxymethylase. This assay involves the direct measurement of the [14C]HCH0 which is generated when [3-14C]-serine is employed as the substrate. The new assay eliminates 14 the need for a solvent extraction of a [C]HCHO-dimedon adduct which is the basis of the assay devised by Taylor and Weissbach.

The enzyme has been purified employing Affi-Gel Blue. The purified enzyme retains full activity when bound to this affinity chromatography matrix and can be stored in this state at 4° indefinitely.  相似文献   

10.
A rapid method for the preparation of [1-14C]acetyl-l-carnitine is described. The method involves exchange of [1-14C]acetic acid into a pool of unlabeled acetyl-l-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (Cl?) anion exchange resin. One of the procedures used to verify the product [1-14C]acetyl-l-carnitine can be used to synthesize (3S)-[5-14C]citric acid.  相似文献   

11.
A variety of radioactive analogs of adenine and adenosine were incubated with guinea pig cerebral cortical slices. Neither 1,N6-ethano[14C]adenosine nor 1,N6-ethanol[14C]adenine were significantly incorporated into intracellular nucleotides. 2-chloro[8-3H]adenine was incorporated, but at a very low rate and conclusive evidence for the formation of intracellular radioactive 2-chlorocyclic AMP was not obtained. N6-Benzyl[14C]adenosine was converted only to intracellular monophosphates and significant formation of radioactive N6-benzylcyclic AMP was not detected during a subsequent incubation. 2′-Deoxy-[8-14C] adenosine was converted to both intracellular radioactive 2′-deoxyadenine nucleotides and radioactive adenine nucleotides. Stimulation of these labeled slices with a variety of agents resulted in formation of both radioactive 2′-deoxycyclic AMP and cyclic AMP. Investigation of the effect of various other compounds on uptake of adenine or adenosine suggested that certain other adenosine analogs might serve as precursors of abnormal cyclic nucleotides in intact cells.  相似文献   

12.
—A microisotopic method for measuring acetylcholinesterase activity in isolated cells is described. The assay employs [14C]acetylcholine and can measure 7 × 10-12 moles of acetylcholine hydrolysed/hr in 50-150 samples per experiment. The method described has been applied to the measurement of cholinesterase activity in individual sympathetic ganglion cells of the cat. It has been shown that under standard conditions the substrate has complete access to the enzymatic site.  相似文献   

13.
System L is a major nutrient transport system responsible for the Na+-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]l-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]l-leucine by T24 cells is Na+-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]l-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]l-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]l-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]l-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1.  相似文献   

14.
A radioactive assay for guanidoacetate methyltransferase is described. It is based on a separation by an AG 50 (NH4+) column, on which [methyl-14C]Adenosylmethionine is adsorbed, in contrast to [methyl-14C]creatine which can be collected in the effluent fraction. Guanidoacetate methyltransferase is sensitive to inhibition by adenosylhomocysteine and 3-deazaadenosylhomocysteine.  相似文献   

15.
A sensitive radiochemical assay for measurement of histidinol dehydrogenase is presented. The method is based upon separation of the product of the reaction. [14C]histidine, from the substrate, [14C]histidinol, on small Dowex 50 columns. The assay can be performed on cell extracts or on toluenized cells and is approximately 100 times more sensitive than previously reported assays for this enzyme.[14C]histidinol is obtained in high yields through conversion of uniformly labeled 14C-glucose by a strain of Salmonella typhimurium derepressed for the histidine operon and blocked at the histidinol dehydrogenase step. Accumulated [14C]histidinol is purified from the culture supernatant by ion-exchange chromatography.This sensitive assay has facilitated measurement of reduced levels of histidine operon expression in promoter mutants, and has been adapted for study of histidine operon regulation in a cell free protein synthesizing system.  相似文献   

16.
An isoleucine arrest point in G1 was determined by two methods for CHO and 3T3 cells. In the first method the fraction of cells entering S after isoleucine deprivation was assessed by [3H]thymidine labelling and autoradiography. In the second method cells entering S after isoleucine deprivation were identified by double-label autoradiography using [3H] and [14C]thymidine. From the fraction of cells entering S, determined by the two methods, the arrest point in G1 (and entry into G0) is located within the last 40 min of G1.  相似文献   

17.
Saline washed red blood cells of the toadfish convert [1-14C] arachidonic acid to products that cochromatograph with prostaglandin E2 and prostaglandin F. This synthesis is inhibited by indomethacin (10 μg/ml). Conversion of arachidonic acid to prostaglandin E2 was confirmed by mass spectrometry. When saline washed toadfish red blood cells were incubated with a mixture of [1-14C]-arachidonic acid and [5,6,8,9,11,12,14,15,-3H]-arachidonic acid, comparison of the isotope ratios of the radioactive products indicated that prostaglandin F was produced by reduction of prostaglandin E2. The capacity of toadfish red blood cells to reduce prostaglandin E2 to prostaglandin F was confirmed by incubation of the cells with [1-14C] prostaglandin E2.  相似文献   

18.
The rate of collagen synthesis relative to the rate of synthesis of noncollagen protein was determined in several lines of cultured fibroblasts using an assay which measures [14C]proline incorporation into the polypeptide chains of collagen. In this assay procedure, collagen is degraded by protease-free collagenase regardless of whether proline and lysine residues are hydroxylated, thus separating the process of polypeptide synthesis from hydroxylation. It was found that the relative rate of collagen synthesis in L-929 cells was approximately 0.8–1% at all stages of growth. There was no significant increase in the relative rate of collagen synthesis in stationary phase compared to log phase cells in the lines Balb 3T3, 3T6, 3T12, and Swiss mouse 3T6. In all cases, the absolute incorporation of [14C]proline into both collagen and noncollagen proteins expressed as radioactivity incorporated per milligram of cellular protein, was 2–10 times higher in log phase cells, depending on the line examined.  相似文献   

19.
1. A study has been made of the incorporation of carbon from [14C]methane, [14C]methanol and [14C]bicarbonate by cultures of Pseudomonas methanica growing on methane, and [14C]methanol by cultures of the same organism growing on methanol. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compound for periods up to 3min., has been analysed by chromatography and radioautography. 3. Over 90% of the radioactivity fixed from [14C]methane or [14C]methanol at the earliest times of sampling appeared in phosphorylated compounds. Glucose phosphate and fructose phosphate together constituted the largest part of the radioactive phosphates (70–90%); phosphoglycerate was a relatively minor component (2–17%). Other compounds becoming labelled during the incubation included glycine, serine, glutamate, aspartate, malate, citrate and alanine. 4. The first stable products of [14C]bicarbonate fixation were malate and aspartate (containing between them over 90% of the total radioactivity fixed at the earliest times of sampling). 5. The percentage of the total radioactivity fixed that was contained in each of the radioactive compounds has been plotted against time. The slopes of the curves obtained show that hexose phosphates are primary stable products of [14C]methane and [14C]methanol incorporation and that aspartate and malate are primary stable products of [14C]bicarbonate incorporation. 6. No carboxydismutase activity has been found in cell-free extracts of the organism. This fact, together with the other findings, shows that an autotrophic metabolism involving the ribulose diphosphate cycle of carbon dioxide fixation cannot be operating.  相似文献   

20.
The effects of methionine sulfoximine and ammonium chloride on [14C] glutamate metabolism in excised leaves of Triticum aestivum were investigated. Glutamine was the principal product derived from [U14C]glutamate in the light and in the absence of inhibitor or NH4Cl. Other amino acids, organic acids, sugars, sugar phosphates, and CO2 became slightly radioactive. Ammonium chloride (10 mm) increased formation of [14C] glutamine, aspartate, citrate, and malate but decreased incorporation into 2-oxoglutarate, alanine, and 14CO2. Methionine sulfoximine (1 mm) suppressed glutamine synthesis, caused NH3 to accumulate, increased metabolism of the added radioactive glutamate, decreased tissue levels of glutamate, and decreased incorporation of radioactivity into other amino acids. Methionine sulfoximine also caused most of the 14C from [U-14C]glutamate to be incorporated into malate and succinate, whereas most of the 14C from [1-14C]glutamate was metabolized to CO2 and sugar phosphates. Thus, formation of radioactive organic acids in the presence of methionine sulfoximine does not take place indirectly through “dark” fixation of CO2 released by degradation of glutamate when ammonia assimilation is blocked. When illuminated leaves supplied with [U-14C] glutamate without inhibitor or NH4Cl were transferred to darkness, there was increased metabolism of the glutamate to glutamine, aspartate, succinate, malate, and 14CO2. Darkening had little effect on the labeling pattern in leaves treated with methionine sulfoximine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号