首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunocytochemical staining has been used to detect putative autoimmune B-cells in rabbits undergoing chronic allotype suppression. This condition is seen in heterozygous rabbits exposed perinatally to antibody against the paternal immunoglobulin allotype. Such animals develop lifelong suppression for this allotype and have been used as models for study of antibody-induced disturbance of immune regulation. Normal rabbits deliberately immunized against a heterologous allotype were used to establish the feasibility of identifying cells forming anti-allotypic antibodies in cryostat sections of rabbit lymphoid tissues. Incubation and staining of tissue sections from suppressed rabbits then revealed the presence of autoimmune B-cells, with antibody specificity for the suppressed allotype, in all chronically suppressed adult rabbits tested. Sequential incubation and staining with allotype- and anti-allotype-enzyme conjugates established that such cells were of non-suppressed origin. Auto-anti-allotype antibody-forming cells were not found in normal heterozygotes or in chimeric rabbits. The immunocytochemical techniques described here permitted simultaneous detection of specificity (i.e., anti-allotype) and origin (allotype) of antibody-forming cells involved in an autoimmune response, as well as their anatomical correlation with other B-cells of suppressed or non-suppressed origin. Since the method described can be adapted to detection of alternate cell markers, we believe it to have potential application to the study of other autoimmune phenomena.  相似文献   

2.
We describe a technique for producing germ-line chimeric rainbow trout, Oncorhynchus mykiss, by microinjection of the isolated blastomeres. FITC-labeled donor cells and non-labeled recipient embryos at various developmental stages between the early blastula and early gastrula stages were used for cell transplantation. The chimera formation rate and the degree of donor cell distribution in recipient embryos were evaluated at both the late gastrula stage (5 days post fertilization (dpf)) and the 40-somite stage (10 dpf). Among the six combinations of developmental stages of donor and recipient embryos, the combination of midblastula (2.5 dpf) donor cells and early blastula (1.5 dpf) recipient embryos gave the highest chimera formation rate and the best distribution pattern of donor cells. Using this combination, chimeric rainbow trout were produced with donor blastomeres from dominant orange-colored mutant embryos and wild-type recipient embryos. Of the 238 chimeric embryos produced, 28 (12%) hatched normally and 14 of the 28 fry (50%) had donor-derived orange body color. To test for germ-line transmission of donor cells, gametes obtained from the matured chimeras were fertilized with gametes from wild-type fish. Of the 19 matured chimeras, 6 (32%) yielded donor-derived orange-colored progeny, in addition to wild-type siblings. The contribution rates of donor cells in the germ-line ranged from 0.3 to 14%. This technique for producing germ-line chimeras should be a powerful tool for cell-mediated gene transfer in rainbow trout. Especially, if body color mutants are used for either donor cells or the host embryos, it will be possible to easily concentrate F1 transgenic embryos derived from transplanted donor cells by body color screening. Mol. Reprod. Dev. 59: 380-389, 2001.  相似文献   

3.
NK cell tolerance in mixed allogeneic chimeras   总被引:11,自引:0,他引:11  
Alterations in inhibitory receptor expression on NK cells have been detected in mixed allogeneic chimeras and in mosaic MHC class I-expressing transgenic mice. However, it is not known whether or not NK cells are tolerant to host and donor Ags in mixed chimeras. In vitro studies have shown a lack of mutual tolerance of separated donor and host NK cells obtained from mixed chimeras. Using BALB/c-->B6 fully MHC-mismatched mixed chimeras, we have now investigated this question in vivo. Neither donor nor host NK cells in mixed chimeras showed evidence for activation, as indicated by expression of B220 and Thy-1.2 on NK cells in chimeric mice at levels similar to those in nonchimeric control mice. Lethally irradiated, established mixed BALB/c--> B6 chimeras rejected a low dose of beta(2)-microglobulin-deficient bone marrow cells (BMC) efficiently but did not reject BALB/c or B6 BMCs. In contrast, similarly conditioned B6 mice rejected both BALB/c and beta(2)-microglobulin-deficient BMCs. Thus, NK cells were specifically tolerant to the donor and the host in mixed allogeneic chimeras. The similar growth of RMA lymphoma cells in both chimeric and control B6 mice further supports the conclusion that donor BALB/c NK cells are tolerant to B6 Ags in chimeras. Administration of a high dose of exogenous IL-2 could not break NK cell tolerance in chimeric mice, suggesting that NK cell tolerance in chimeras is not due to a lack of activating cytokine. No reduction in the level of expression of the activating receptor Ly-49D, recognizing a donor MHC molecule, was detected among recipient NK cells in mixed chimeras. Thus, the present studies demonstrate that NK cells in mixed chimeras are stably tolerant to both donor and host Ags, by mechanisms that are as yet unexplained.  相似文献   

4.
Ia restriction specificity involved in T cell proliferative responses to keyhole limpet hemocyanin (KLH) has been analyzed using a variety of allogeneic bone marrow chimeras. The chimeric mice were prepared by reconstituting irradiated AKR, SJL, B10.BR and B10.A(4R) mice with bone marrow cells from B10 mice. When such chimeric mice had first been primed with KLH in complete Freund's adjuvant (CFA), T cells from H-2 incompatible fully allogeneic chimeras showed significantly higher responses to KLH in the presence of antigen-presenting cells (APC) of donor strain (B10) than APC of recipient strain. However, in H-2 subregion compatible chimeras, [B10→B10.A(4R)], which were matched at the H-2D locus and at minor histocompatible loci, the T cells could mount vigorous responses to KLH with antigen-presenting cells (APC) of either donor or recipient type. The same results were obtained as well with chimeras that had been thymectomized after full reconstitution of lymphoid tissues by donor-derived cells. A considerable proportion of KLH-specific T cell hybridomas established from [B10→B10.A(4R)] chimeras exhibited both I-Ab and I-Ak restriction specificities. The present findings indicate that the bias to donor Ia type of antigen specific T cells is determined by donor-derived APC present in the extrathymic environment but that cross-reactivity to the recipient Ia is influenced to some degree by histocompatibility between donor and recipient mice, even though the histocompatible H-2D locus and minor histocompatibility loci seem not to be directly involved in the I-A restricted responses studied herein.  相似文献   

5.
Germline chimeric chickens can be constructed by injecting donor chicken blastodermal cells (CBCs) into recipient embryos and incubating to hatch. Transgenic chickens can be produced through chimeric intermediates if the donor cells are genetically manipulated; the chance of producing a transgenic chimera would be increased by enriching the donor population in transfected cells. To demonstrate that donor CBCs can be sorted according to the expression of a foreign gene, CBCs in suspension were subjected to transfection with plasmid DNA encoding bacterial β‐galactosidase (β‐gal). Following an overnight incubation, the CBCs were loaded with 5‐dodecanoylaminofluorescein di‐β‐D‐galactopyranoside (C12FDG), which is fluorescent after cleavage by β‐gal. The treated cells were subjected to fluorescence activated cell sorting (FACS) to give “positive” (fluorescent) and “negative” (non‐fluorescent) populations. Almost 100% of the “positive” population showed β‐gal activity. “Positive” cells were cultured on mouse SNL 76/7 fibroblast feeder cells and formed colonies, most of which still stained positively for β‐gal activity after three days. FACS‐sorted cells of Barred Plymouth Rock origin were injected into recipient White Leghorn embryos, resulting in chimeric embryos. Of the 298 embryos injected with sorted cells, 23 (8%; 18 injected with “positive cells, five with “negative”) survived to rearing. Somatic chimerism was seen in 12 of 18 (67%) “positive” and three of five (60%) “negative” birds with the proportion of black pigmentation averaging 19% overall. Twenty birds reached sexual maturity, of which 12 (60%) were somatically chimeric; seven (35%) of these produced donor‐derived chicks. Donor CBCs can, therefore, be sorted by FACS according to the expression of a selectable marker gene without impairing their ability to contribute to germline chimeras; this procedure could be incorporated into a practicable method by which to increase the chances of producing a transgenic chicken. Mol. Reprod. Dev. 52:33–42, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Semiallogeneic chimeras were produced by injecting 3 X 10(7) spleen cells of mice CBA (H--2k, Mlsd) to lethally irradiated mice (CBA X C57BL/6)F1. Two days later recipients were given cyclophosphamide (CP), 2 mg per mouse, to prevent death of graft versus host reaction (GVHR). For 1.5--2 months after the creation of chimerism in 23 of 26 mice under study all cells producing antibodies to SRBC were represented by donor cells of H-2 phenotype; 3 mice were partial chimeras. Spontaneous blast transformation in the cultures of chimera spleen did not exceed the control level, and in the mixed lymphocyte culture chimera cells failed to proliferate on addition of irradiated lymphocytes (CBA X C57BL/6) F1. At the same time chimera gave intensive blast transformation to the irradiated lymphocytes of the third line of mice DBA/2 (H--2d, Mlsa). Among the chimera spleen cells no killers capable of destroying target cells of donor or recipient origin were revealed. Similar results were obtained in vivo: chimera cells gave no positive local GVHR after administration to mice (CBA X C57BL/6) F1. Prolonged chimerism was accompanied by a reactivity of donor T-lymphocytes to the recipient transplantation antigens. A blocking factor was revealed in the blood serum of chimeras. The substitution of donor lymphocytes for the recipient cells begins after 3 to 5 months. At the same period donor T-cell population reconstitutes partially the responsiveness to the recipient antigens and the blocking factor disappears from chimeras blood.  相似文献   

7.
In previous experiments in our laboratories, chickens that are chimeric in their gamete, melanocyte, and blood cell populations have been produced by injection of dispersed stage X blastodermal donor cells into the subgerminal cavity of stage X recipient embryos. In some experiments, donor cells were transfected with reporter gene constructs prior to injection as a preliminary step in the production of transgenic birds. Chimerism was assessed by test mating, observation of plumage, and DNA fingerprinting. Methods were sought that would provide a relatively rapid analysis of the spatial distribution of descendants of donor cells in chimeras to assess the efficacy of various methods of chimera construction. To date, the sex of donor and recipient embryos was not known and, therefore, numerous mixed sex chimeras must have been constructed by chance, since donor cells were usually collected from several embryos rather than from individual embryos. The presence of female-derived cells was determined by in situ hybridization using a W-chromosome-specific DNA probe, using smears of washed erythrocytes from 16 phenotypically male chimeric chickens ranging in age from 4 days to 42 months posthatching. The proportion of female cells detected in the erythrocyte samples was zero (eight samples) or very low (0.020-0.083%), although 1% of the erythrocytes from a phenotypically male chick that was killed 4 days after hatch were female-derived. The low proportions of female-derived cells were surprising, considering that most of these chimeras had been produced by the injection of cells pooled from several donor embryos and most recipients had been exposed to gamma irradiation prior to injection, thus dramatically enhancing the level of incorporation of donor cells into the resulting chimeras. By contrast, 0-100% of the erythrocytes were female-derived in blood samples taken at 10 days of incubation from the chorioallantois of seven phenotypically normal male embryos that resulted from the injection of blastodermal cells pooled from five embryos into irradiated recipient embryos. Approximately 70% of the erythrocytes in a blood sample from a phenotypically normal female chimeric embryo were female-derived, and 100% of the erythrocytes examined from an intersex embryo bearing a right testis and a left ovary were female-derived. These results indicate that female-derived cells can contribute to the formation of erythropoietic tissue during the early development of what will become a phenotypically male chimeric embryo. It would appear, therefore, that female-derived cells are blocked in development or destroyed, or certain male-female combinations of cells may be lethal prior to hatching.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The immune regulatory function of macrophages (M?s) in mixed chimeras has not been determined. In the present study, with a multi-lineage B6-to-BALB/c mixed chimeric model, we examined the ability of donor-derived splenic M?s in the induction of regulatory T cells (Treg). B6 splenic M?s from mixed chimeras induced significantly less cell proliferation, more IL-10 and TGF-β, and less IL-2 and IFN-γ productions of CD4(+) T cells from BALB/c mice than naive B6 M?s did, whereas they showed similar stimulatory activity to the third part C3H CD4(+) T cells. Importantly, highly purified donor F4/80(+)CD11c(-) M?s efficiently induced recipient CD4(+)Foxp3(+) Treg cells from CD4(+)CD25(-)Foxp3(-) T cells. Furthermore, donor M?s of mixed chimeras produced more IL-10 and less IFN-γ than those of naive mice when cultured with BALB/c but not the third party C3H CD4(+) T cells. Induction of recipient CD4(+) Treg cells by donor M?s was significantly blocked by anti-IL-10, but not by anti-TGF-β mAb. Therefore, donor M?s have the ability to induce recipient CD4(+)Foxp3(+) Treg cells in a donor antigen-specific manner, at least partially, via an IL-10-dependent pathway. This study for the first time showed that, in mixed allogeneic chimeras, donor M?s could be specifically tolerant to recipients and gained the ability to induce recipient but not the third party Foxp3(+) Treg cells. Whether this approach is involved in transplant immune tolerance needs to be determined.  相似文献   

9.
Germ-line chimerism was successfully induced by blastoderm transplantation from donor triploid crucian carp, which reproduces gynogenetically, to recipient diploid goldfish, which reproduces bisexually. Lower part of donor blastoderm including primordial germ cells (PGCs) was sandwiched between recipient blastoderm at the mid- to late-blastula stage. When donor grafts were prepared from intact embryos or ventralized ones by removing vegetal yolk hemisphere at the 1- to 2-cell stage, malformations including double axes were observed in the resultant chimeras transplanted with grafts from intact embryos at the hatching stage, while a few malformations in those from ventralized embryos. PGCs originated from donor grafts were observed around the gonadal anlage at 10 days post-fertilization in chimeras. When ploidy of erythrocytes and epidermal cells in chimeric fish was examined by flow-cytometry, no triploid cells were detected at 1- and 5-year-old chimeras. Three-year-old chimeric fish (n=5) laid eggs originated from the donor together with those from the recipient. The frequency of eggs from the donor crucian carp blastoderm varied from 3.1 to 89.3% between chimeras.  相似文献   

10.
Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, [BR----AKR], as well as syngeneic marrow cells, [AKR----AKR], showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice that had total or partial histoincompatibility at the H-2 determinants between donor and recipient, [B10----AKR], [B10.AQR----AKR], [B10.A(4R)----AKR], or [B10.A(5R)----AKR], were almost completely unresponsive in DTH and antibacterial immunity. However, when [B10----AKR] H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type.  相似文献   

11.
Immunization of BALB/c mice with MOPC-104E myeloma protein induced idiotype-specific enhancing B cells that acted on anti-dextran antibody producing B cells. The enhancing cells have the surface phenotype of B cells. With the use of several H-2 or Igh congenic mice, it was found that the cooperation among B cells was controlled by both the major histocompatibility complex (MHC) and Igh. The capability to generate enhancing B cell activity was analyzed by using tetraparental bone marrow chimeras. (C57BL/6 X BALB/c)F1 mice, for example, were lethally irradiated and were reconstituted with C57BL/6 and BALB/c bone marrow cells. Nine to 12 wk after the reconstitution, the chimeras were immunized with the myeloma protein and were tested for their enhancing B cell activity. After the removal of C57BL/6 origin cells by treatment with anti-H-2b + complement, residual cells exhibited enhancing B cell activity on BALB.B, as well as BALB/c antidextran antibody response. This indicates that the generation of H-2-restricted, idiotype-specific enhancing B cell activity differentiated adaptively so as to recognize foreign MHC as self under chimeric conditions. On the other hand, splenic B cells treated with anti-H-2d + complement did not enhance the responses of BALB/c or BALB.B. Even in a chimeric environment, the B cells of C57BL/6 origin could not obtain the ability to generate enhancing B cell activity upon immunization of the idiotype. The results described here, taken in conjunction with our previous studies, suggest that the Ig heavy chain gene(s) predominantly control the Igh restriction properties of enhancing B cells, and the capability of MHC recognition by B cells is selected under chimeric conditions.  相似文献   

12.
We transfused concentrated primordial germ cells (PGCs) of the black strain (D: homozygous for the autosomal incomplete dominant gene, D) of quail into the embryos of the wild-type plumage strain (WP: d+/d+) of quail. The recipient quail were raised until sexual maturity and a progeny test of the putative germline chimeras was performed to examine the donor gamete-derived offspring (D/d+). Thirty-one percent (36/115) of the transfused quail hatched and 21 (13 females and 8 males) of them reached maturity. Five females and 2 males were germline chimeras producing donor gamete-derived offspring. Transmission rates of the donor derived gametes in the chimeric females and males were 1.8-8.3% and 2.6-63.0%, respectively. Germline chimeric and the other putative chimeric males were also test-mated with females from the sex-linked imperfect albino strain (AL: d+/d+, al/W, where al indicates the sex-linked imperfect albino gene on the Z chromosome, and W indicates the W chromosome) for autosexing of W-bearing spermatozoa: No albino offspring were born.  相似文献   

13.
This study aimed at collecting background knowledge for chimeric pig production. We analyzed the genetic sex of the chimeric pigs in relation to phenotypic sex as well as to functional germ cell formation. Chimeric pigs were produced by injecting Day 6 or Day 7 inner cell mass (ICM) cells into Day 6 blastocysts. Approximately 20% of the piglets born from the injected blastocysts showed overt coat color chimerism regardless of the embryonic stage of donor cells. The male:female sex ratio was 7:2 and 6:1 in the chimeras derived from Day 6 and Day 7 ICM cells, respectively, showing an obvious bias toward males. When XX donor cells were injected into XY blastocysts at the same embryonic stage, the phenotypic sex of the resulting chimera was male with no germ-line cells formed from the donor cell lineage. On the other hand, when the donor was XY and the recipient blastocyst was XX, the phenotypic sex of the chimera was male, and germ-line cells were derived only from the donor cells. The combination of XY donor cells and XY blastocysts produced some chimeras in which the donor cell lineage did not contribute to germ-line formation even when it appeared in coat color. When the embryonic stage of the donor was advanced by 1 day in the XY-XY combination, 100% of the germ-line cells of the chimeras were derived from the donor cell lineage. These data showed that characteristics of sex differentiation and germ cell formation in chimeric pigs are similar to those in chimeric mice.  相似文献   

14.
A novel system has been developed to determine the origin and development of primordial germ cells (PGCs) in avian embryos directly. Approximately 700 cells were removed from the center of the area pellucida, the outer of the area pellucida, and the area opaca of the stage X blastoderm (Eyal-Giladi and Kochav, 1976; Dev Biol 49:321–337). When the cells were removed from the center of the area pellucida, the mean number of circulating PGCs per 1 μl of blood was significantly decreased to 13 (P < 0.05) in the embryo at stage 15 (Hamburger and Hamilton, 1951: J Morphol 88:49–92) as compared to intact embryos of 51. When the removed recipient cells from the center of the area pellucida were replenished with 500 donor cells, no reduction in the PGC number was observed. The removal of cells from the outer of area pellucida or from the area opaca had no effect on the number of PGCs. When another set of the manipulated embryos were cultured ex vivo to hatching and reared to sexual maturity, the absence of germ cells and the degeneration of seminiferous tubules were observed in resulting chickens derived from the blastoderm from which the cells were removed from the center of the area pellucida. Chimeric embryos produced by the male donor cells and the female recipient contained the female-derived cells at 97.2% in the whole embryo and 94.3% in the erythrocytes at 5 days of incubation. At 5–7 days of incubation, masculinization was observed in about one half of the mixed-sex embryos. The proportions of the female-derived cells in the whole embryo and in the erythrocytes were 76.5% and 80.2% at 7 days to 55.7% and 62.5% at 10 days of incubation, respectively. When the chimeras reached their sexual maturity, they were test mated to assess donor contribution to their germline. Five of six male chimeras (83%) and three of five female chimeras (60%) from male donor cells and a female recipient embryo from which 700 cells at the center of area pellucida were removed were germline chimeras. Three of the five male germline chimeras (60%) and one of the three female germline chimeras (33%) transmitted exclusively (100%) donor-derived gametes into the offspring. When embryonic cells were removed from the outer of area pellucida or area opaca, regardless of the sex combination of the donor and the recipient, the transmission of the donor-derived gametes was essentially null. The findings in the present studies demonstrated, both in vivo and in vitro, that the PGCs originate in the central part of the area pellucida and that the developmental fate to germ cell (PGCs) had been destined at stage X blastoderm in chickens. Mol. Reprod. Dev. 48:501–510, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
鸡囊胚细胞嵌合体制作技术研究及其应用前景   总被引:2,自引:1,他引:1  
家鸡X期囊胚细胞(BCs)嵌合体技术,既是利用转基因技术进行家鸡品种改良和凭借转基因家鸡生物反应器生产医用蛋白等研究领域的关键技术,也是利用BCs冻存家鸡和珍稀鸟类双亲种质资源实现鸟类品种资源多样性保护、利用和挽救珍稀濒危鸟类的重要途径。从家鸡BCs嵌合体制作技术的基本过程:(1) 羽色嵌合体家鸡模型的建立;(2) 囊胚的分离与消化;(3) 受体种蛋的致弱处理;(4) 受体种蛋的开窗(包括部位、方法及封口技术等);(5) 供体细胞导入受体胚(显微注射或简易操作);(6) 孵化(常规方法或换壳培养)等几个方面的研究进展、目前存在的问题以及研究方向等进行了系统阐述。Abstract: The technology of producing chicken chimeras using blastodermal cells is very important not only in the field of transgenic chicken bioreactor but also in searching for efficient ways to conserve avian genetic resource. The basic processes for producing chicken chimeras consist of: (1) Setting up the color model; (2) Separating and dissociating of donor embryos; (3) Compromising of the recipient embryos; (4) Windowing and recovering the recipient eggs; (5) Cells injecting; (6) Method of hatching. The progress, obstacles and prospects of producing chicken chimeras via BCs were discussed in this paper.  相似文献   

16.
Mixed irradiation bone marrow chimeras were prepared by reconstituting lethally irradiated C57BL/10 (B10) or B10.D2 mice with T cell-depleted bone marrow cells of B10 plus B10.D2 origin. These chimeras were healthy and survived well under conventional housing conditions and after experimental laboratory infections. Of a total of 17 chimeras tested, 2 died spontaneously or from the injected virus. Twelve of fifteen chimeras mounted a measurable cytotoxic T cell response to virus. Despite approximately equal percentages of B10 and B10.D2 lymphocytes in chimeras, cytotoxic T cell responses to vaccinia virus and lymphocytic choriomeningitis virus were mediated variably by either syngeneic or allogeneic donor lymphocytes; thus the H-2 type of effector T cells frequently did not correspond to the 50:50 distribution of spleen or peripheral blood lymphocytes. Cytotoxic responses were restricted exclusively to recipient H-2 type. All mixed chimeras examined were able to mount a good IgG response to vesicular stomatitis virus. These results confirm previous data suggesting that such mixed chimeras are healthy and immunocompetent and demonstrate strict recipient-determined restriction specificity of effector T cells; they also suggest that if T help is necessary for induction of virus-specific cytotoxic T cells, it does not require host-restricted interactions between helper T cells and precursor cytotoxic T cells.  相似文献   

17.
Hematopoietic chimerism is considered to generate robust allogeneic tolerance; however, tissue rejection by chimeras can occur. This "split tolerance" can result from immunity toward tissue-specific Ags not expressed by hematopoietic cells. Known to occur in chimeric recipients of skin grafts, it has not often been reported for other donor tissues. Because chimerism is viewed as a potential approach to induce islet transplantation tolerance, we generated mixed bone marrow chimerism in the tolerance-resistant NOD mouse and tested for split tolerance. An unusual multilevel split tolerance developed in NOD chimeras, but not chimeric B6 controls. NOD chimeras demonstrated persistent T cell chimerism but rejected other donor hematopoietic cells, including B cells. NOD chimeras also showed partial donor alloreactivity. Furthermore, NOD chimeras were split tolerant to donor skin transplants and even donor islet transplants, unlike control B6 chimeras. Surprisingly, islet rejection was not a result of autoimmunity, since NOD chimeras did not reject syngeneic islets. Split tolerance was linked to non-MHC genes of the NOD genetic background and was manifested recessively in F(1) studies. Also, NOD chimeras but not B6 chimeras could generate serum alloantibodies, although at greatly reduced levels compared with nonchimeric controls. Surprisingly, the alloantibody response was sufficiently cross-reactive that chimerism-induced humoral tolerance extended to third-party cells. These data identify split tolerance, generated by a tolerance-resistant genetic background, as an important new limitation to the chimerism approach. In contrast, the possibility of humoral tolerance to multiple donors is potentially beneficial.  相似文献   

18.
Nonmyeloablative conditioning has significantly reduced the morbidity associated with bone marrow transplantation. The donor hemopoietic cell lineage(s) responsible for the induction and maintenance of tolerance in nonmyeloablatively conditioned recipients is not defined. In the present studies we evaluated which hemopoietic stem cell-derived components are critical to the induction of tolerance in a total body irradiation-based model. Recipient B10 mice were pretreated with mAbs and transplanted with allogeneic B10.BR bone marrow after conditioning with 100-300 cGy total body irradiation. The proportion of recipients engrafting increased in a dose-dependent fashion. All chimeric recipients exhibited multilineage donor cell production. However, induction of tolerance correlated strictly with early production of donor T cells. The chimeras without donor T cells rejected donor skin grafts and demonstrated strong antidonor reactivity in vitro, while possessing high levels of donor chimerism. These animals lost chimerism within 8 mo. Differentiation into T cells was aborted at a prethymic stage in recipients that did not produce donor T cells. Moreover, donor Ag-driven clonal deletion of recipient T cells occurred only in chimeras with donor T cells. These results demonstrate that donor T cell production is critical in the induction of transplantation tolerance and the maintenance of durable chimerism. In addition, donor T cell production directly correlates with the deletion of potentially alloreactive cells.  相似文献   

19.
We have ascertained previously from a study of fully allogeneic irradiation chimeras in mice that the H-2 restriction of the suppressor factor (Ly-2 T suppressor factor) is determined by the post-thymic environment protected by the donor cells, rather than by the thymic environment of the recipient. In the present study, we analyzed differentiation influences that determine the Igh restriction specificities of the suppressor inducer T cell factor(s) (TsiF) that are produced by Ly-1+ splenic T cells in fully allogeneic bone marrow chimeras in mice. AKR mice that had been lethally irradiated and reconstituted with B10 marrow cells, [B10----AKR] chimeras, produced Ly-1 TsiF after hyper-immunization with sheep erythrocytes (SRBC) which suppressed antigen--specifically the primary antibody responses to SRBC that were generated in cells of the same Igh-Vb haplotype of donor strain and not those generated in cells of the recipient Igh-Va type. Similar results were obtained when Ly-1 TsiF from [B6----BALB/c] and [BALB/c----B6] chimeras were analyzed. Furthermore, the Ly-1 TsiF from [BALB/c----B6] chimeras suppressed the primary antibody responses of both BALB/c [H-2d, Igh-Va, Igh-Ca] and BAB-14 (H-2d, Igh-Va, Igh-Cb), but not those of CAL-20 (H-2d, Igh-Vd, Igh-Cd). These results demonstrate clearly that the Ly-1 TsiF from allogeneic bone marrow chimeras are donor Igh-V-restricted and are not influenced by the recipient micro-environment, presumably that provided by the thymuses of the recipient mice.  相似文献   

20.
Allogeneic chimeras are valuable tools for studies of complex immune cell interactions in vivo. Mice with severe combined immune deficiency (scid) should be ideal hosts for chimerism with allogeneic bone marrow cells as these animals lack mature T and B lymphocytes capable of reacting against donor alloantigens. However, it has been difficult to achieve full reconstitution of adult scid mice even using coisogenic bone marrow grafts without prior irradiation of the recipient. We explored ways to generate complete reconstitution of scid mice with allogeneic bone marrow. Unirradiated adult scid recipients of allogeneic bone marrow were only marginally reconstituted. Adult scid mice pretreated with 250 R were reconstituted with allogeneic bone marrow as measured by serum IgM concentration, peripheral lymphoid cellularity, and mitogen responses, but a potentially important immunologic deficit was found in these mice: 250 R caused a 70% loss of scid macrophages and dendritic cells which persisted at least 5 months. By contrast, when scid mice were injected i.p. with allogeneic bone marrow within the first 24 h after birth, rapid and complete reconstitution of both T and B cell lineages was achieved, and the animals had APC that were both donor and host in origin. Considering the extent and duration of engraftment (43 wk) by allogeneic cells in neonatally transplanted scid mice, it was anticipated that their bone marrow would be chimeric. However, the bone marrow contained very few donor-derived cells, suggesting that lymphopoiesis may be taking place in other organs in these chimeras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号