首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first‐generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD. Second‐generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD. In this review, we evaluate different APP mouse models of AD, and review recent studies using the second‐generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.  相似文献   

2.
Spontaneous late‐onset Alzheimer's disease (LOAD) accounts for more than 95% of all human AD. As mice do not normally develop AD and as understanding on molecular processes leading to spontaneous LOAD has been insufficient to successfully model LOAD in mouse, no mouse model for LOAD has been available. Existing mouse AD models are all early‐onset AD (EOAD) models that rely on forcible expression of AD‐associated protein(s), which may not recapitulate prerequisites for spontaneous LOAD. This limitation in AD modeling may contribute to the high failure rate of AD drugs in clinical trials. In this study, we hypothesized that genomic instability facilitates development of LOAD and tested two genomic instability mice models in the brain pathology at the old age. Shugoshin‐1 (Sgo1) haploinsufficient (?) mice, a model of chromosome instability (CIN) with chromosomal and centrosomal cohesinopathy, spontaneously exhibited a major feature of AD pathology; amyloid beta accumulation that colocalized with phosphorylated Tau, beta‐secretase 1 (BACE), and mitotic marker phospho‐Histone H3 (p‐H3) in the brain. Another CIN model, spindle checkpoint‐defective BubR1?/+ haploinsufficient mice, did not exhibit the pathology at the same age, suggesting the prolonged mitosis‐origin of the AD pathology. RNA‐seq identified ten differentially expressed genes, among which seven genes have indicated association with AD pathology or neuronal functions (e.g., ARC, EBF3). Thus, the model represents a novel model that recapitulates spontaneous LOAD pathology in mouse. The Sgo1?/+ mouse may serve as a novel tool for investigating mechanisms of spontaneous progression of LOAD pathology, for early diagnosis markers, and for drug development.  相似文献   

3.
Neurodegenerative diseases are devastating mental illnesses without a cure. Alzheimer's disease (AD) characterized by memory loss, multiple cognitive impairments, and changes in personality and behavior. Although tremendous progress has made in understanding the basic biology in disease processes in AD and PD, we still do not have early detectable biomarkers for these diseases. Just in the United States alone, federal and nonfederal funding agencies have spent billions of dollars on clinical trials aimed at finding drugs, but we still do not have a drug or an agent that can slow the AD or PD disease process. One primary reason for this disappointing result may be that the clinical trials enroll patients with AD or PD at advances stages. Although many drugs and agents are tested preclinical and are promising, in human clinical trials, they are mostly ineffective in slowing disease progression. One therapy that has been promising is ‘stem cell therapy’ based on cell culture and pre-clinical studies. In the few clinical studies that have investigated therapies in clinical trials with AD and PD patients at stage I. The therapies, such as stem cell transplantation – appear to delay the symptoms in AD and PD. The purpose of this article is to describe clinical trials using 1) stem cell transplantation methods in AD and PD mouse models and 2) regenerative medicine in AD and PD mouse models, and 3) the current status of investigating preclinical stem cell transplantation in patients with AD and PD.  相似文献   

4.
阿尔茨海默病转基因小鼠的特点和应用   总被引:5,自引:0,他引:5  
建立动物模型的目的是在实验动物身上复制人类疾病的模型,用于研究人类疾病的病因、发病、病理变化以及疾病的预防和治疗。目前尚无理想的阿尔茨海默病(Alzheimer’s disease,AD)动物模型,AD实验动物模型的滞后在很大程度上制约了AD治疗药物的筛选。随着AD病因和发病机制研究的不断深入,更完善的AD动物模型也在陆续出现。近年来出现的转基因动物模型属于AD的病因模型,但也不能完整复制出AD的所有特征。最大的缺憾在于缺乏神经原纤维缠结(neurofibrillary tangles,NFTs)和在某些转基因模型中(尤其是单转基因模型)无广泛的神经元丢失。虽然用免疫组化方法检测到tau蛋白,但从未发现成对螺旋纤丝(paired helical filaments,PHF)。  相似文献   

5.
Alzheimer's disease (AD) is one of the categories of neurodegenerative diseases characterized by a conformational change of a normal protein into a pathological conformer with a high β-sheet content that renders it resistant to degradation and neurotoxic. In AD, the normal soluble amyloid β (sAβ) peptide is converted into oligomeric/fibrillar Aβ. The oligomeric forms of Aβ are thought to be the most toxic, while fibrillar Aβ becomes deposited as amyloid plaques and congophilic angiopathy, which both serve as neuropathological markers of the disease. An additional important feature of AD is the accumulation of abnormally phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles. Many therapeutic interventions are under investigation to prevent and treat AD. The testing of these diverse approaches to ameliorate AD pathology has been made possible by the existence of numerous transgenic mouse models which each mirror specific aspects of AD pathology. None of the current murine models is a perfect match of the human disease. Perhaps the most exciting of the therapeutic approaches being developed is immunomodulation targeting the aggregating proteins, Aβ and tau. This type of AD therapy is currently being assessed in many transgenic mouse models, and promising findings have led to clinical trials. However, there is a discrepancy between results in murine models and ongoing clinical trials, which highlight the limitations of these models and also of our understanding of the underlying etiology and pathogenesis of AD. Because of these uncertainties, Tg models for AD are continuously being refined with the aim to better understand the disease and to enhance the predictive validity of potential treatments such as immunotherapies.  相似文献   

6.
The development of transgenic mice expressing mutated forms of the human amyloid precursor protein (APP) and presenilin-1 (PS1), proteins associated with familial forms of Alzheimer's disease (AD), has provided a backbone for translational studies of potential novel drug therapies. Such mice model some aspects of AD pathology in that they develop senile plaque-like deposits of the amyloid beta-protein (Aβ) together with inflammatory pathology and some degree of neurodegeneration. Aβ deposition is considered to be a potentially pathogenic feature of AD and drug discovery programmes utilising such mice and associated with drugs now reaching the clinic have been largely directed towards decreasing the deposition. This goal has been achieved in the mouse models, although the agents developed have not, to date, shown evidence of efficacy in AD sufferers and, in some cases, have worsened the clinical state. Nevertheless, reducing the pathological features of the disease continues to be the objective of pharmacological intervention and ongoing programmes continue to use transgenic mice expressing mutated APP and PS1 transgenes in attempts to overcome issues and difficulties arising from the initial clinical trials and to explore new approaches to AD treatment.  相似文献   

7.
The role of nicotinic acetylcholine receptors in Alzheimer's disease.   总被引:5,自引:0,他引:5  
The two hallmark lesions of Alzheimer's disease (AD) are extracellular amyloid plaques, mainly formed by a small peptide called amyloid-beta (Abeta), and neurofibrillary tangles, which are intracellular inclusions formed by aggregates of hyperphosphorylated tau protein. One of the major neurochemical features of AD is the marked reduction of nicotinic acetylcholine receptors in disease-relevant brain regions such as the cerebral cortex and hippocampus. This loss is further compounded by the loss of cholinergic cells, which contributes to the cognitive dysfunction. This observation has had a major impact on therapeutic treatments, as efforts to restore cholinergic function such as the administration of acetylcholinesterase inhibitors have been, until recently, the major treatment options available for AD. Understanding the relationship of these hallmark lesions with the plethora of other changes that occur in the AD brain has proven to be a difficult challenge to resolve. The utilization of transgenic mouse models, that recapitulate one or more neuropathological and neurochemical features of the AD brain is providing some inroads, as they offer a means to gain mechanistic insights into the disease process in an in vivo setting. In this review, we consider the role of nicotinic acetylcholine receptors in transgenic models and in AD.  相似文献   

8.
Alzheimer’s disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and result from multiple etiologic factors, including environmental, genetic, and metabolic factors, whereas FAD is caused by mutations in the presenilins or amyloid-β (Aβ) precursor protein (APP) genes. A commonly used animal model for AD is the 3xTg-AD transgenic mouse model, which harbors mutated presenilin 1, APP, and tau genes and thus represents a model of FAD. There is an unmet need in the field to characterize animal models representing different AD mechanisms, so that potential drugs for SAD can be evaluated preclinically in these animal models. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), the icv-STZ mouse, shows many aspects of SAD. In this study, we compared the non-cognitive and cognitive behaviors as well as biochemical and immunohistochemical alterations between the icv-STZ mouse and the 3xTg-AD mouse. We found that both mouse models showed increased exploratory activity as well as impaired learning and spatial memory. Both models also demonstrated neuroinflammation, altered synaptic proteins and insulin/IGF-1 (insulin-like growth factor-1) signaling, and increased hyperphosphorylated tau in the brain. The most prominent brain abnormality in the icv-STZ mouse was neuroinflammation, and in the 3xTg-AD mouse it was elevation of hyperphosphorylated tau. These observations demonstrate the behavioral and neuropathological similarities and differences between the icv-STZ mouse and the 3xTg-AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.  相似文献   

9.
Advances in our understanding of the etiologies and pathogenesis of Alzheimer's disease (AD) highlight a role for free radical-mediated injury to brain regions from early stages of this illness. Here we will review the evidence from transgenic mouse models of AD, autopsy samples, and human biofluids obtained during life paying particular attention to the stage of disease. In addition, we will review the epidemiologic literature that addresses the potential of anti-oxidants to prevent incident dementia from AD, and the clinical trial literature that addresses anti-oxidant preventative or therapeutic strategies for different stage of AD. Future efforts in preclinical models and ultimately clinical trials are needed to define optimally effective agents and combinations, doses, and timing to suppress safely this facet of AD.  相似文献   

10.
Alzheimer's disease (AD) is the most common neurodegenerative affliction of the elderly, presenting with progressive memory loss and dementia and terminating with death. There have been significant advances in understanding the biology and subsequent diagnosis of AD; however, the furious pace of research has not yet translated into a disease-modifying treatment. While scientific inquiry in AD is largely centered on identifying biological players and pathological mechanisms, the day-to-day realities of AD patients and their caregivers revolve around their steady and heartbreaking cognitive decline. In the past decade, AD research has been fundamentally transformed by the development of genetically modified animal models of amyloid-driven neurodegeneration. These important in vivo models not only replicate some of the hallmark pathology of the disease, such as plaque-like amyloid accumulations and astrocytic inflammation, but also some of the cognitive impairments relevant to AD. In this article, we will provide a detailed review of the behavioral and cognitive deficits present in several transgenic mouse models of AD and discuss their functional changes in response to experimental treatments.  相似文献   

11.
Alzheimer's disease (AD) is a devastating disease affecting predominantly the aging population. One of the characteristic pathological hallmarks of AD are neuritic plaques, consisting of amyloid-β peptide (Aβ). While there has been some advancement in diagnostic classification of AD patients according to their clinical severity, no fully reliable method for pre-symptomatic diagnosis of AD is available. To enable such early diagnosis, which will allow the initiation of treatments early in the disease progress, neuroimaging tools are under development, making use of Aβ-binding ligands that can visualize amyloid plaques in the living brain. Here we investigate the properties of a newly designed series of D-enantiomeric peptides which are derivatives of ACI-80, formerly called D1, which was developed to specifically bind aggregated Aβ1-42. We describe ACI-80 derivatives with increased stability and Aβ binding properties, which were characterized using surface plasmon resonance and enzyme-linked immunosorbent assays. The specific interactions of the lead compounds with amyloid plaques were validated by ex vivo immunochemistry in transgenic mouse models of AD. The novel compounds showed increased binding affinity and are promising candidates for further development into in vivo imaging compounds.  相似文献   

12.
ApoE4 (apolipoprotein E4) is the major known genetic risk factor for AD (Alzheimer's disease). In most clinical studies, apoE4 carriers account for 65-80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis. Emerging data suggest that apoE4, with its multiple cellular origins and multiple structural and biophysical properties, contributes to AD in multiple ways either independently or in combination with other factors, such as Aβ (amyloid β-peptide) and tau. Many apoE mouse models have been established to study the mechanisms underlying the pathogenic actions of apoE4. These include transgenic mice expressing different apoE isoforms in neurons or astrocytes, those expressing neurotoxic apoE4 fragments in neurons and human apoE isoform knock-in mice. Since apoE is expressed in different types of cells, including astrocytes and neurons, and in brains under diverse physiological and/or pathophysiological conditions, these apoE mouse models provide unique tools to study the cellular source-dependent roles of apoE isoforms in neurobiology and in the pathogenesis of AD. They also provide useful tools for discovery and development of drugs targeting apoE4's detrimental effects.  相似文献   

13.
We have undertaken an integrated chemical and morphological comparison of the amyloid-beta (Abeta) molecules and the amyloid plaques present in the brains of APP23 transgenic (tg) mice and human Alzheimer's disease (AD) patients. Despite an apparent overall structural resemblance to AD pathology, our detailed chemical analyses revealed that although the amyloid plaques characteristic of AD contain cores that are highly resistant to chemical and physical disruption, the tg mice produced amyloid cores that were completely soluble in buffers containing SDS. Abeta chemical alterations account for the extreme stability of AD plaque core amyloid. The corresponding lack of post-translational modifications such as N-terminal degradation, isomerization, racemization, pyroglutamyl formation, oxidation, and covalently linked dimers in tg mouse Abeta provides an explanation for the differences in solubility between human AD and the APP23 tg mouse plaques. We hypothesize either that insufficient time is available for Abeta structural modifications or that the complex species-specific environment of the human disease is not precisely replicated in the tg mice. The appraisal of therapeutic agents or protocols in these animal models must be judged in the context of the lack of complete equivalence between the transgenic mouse plaques and the human AD lesions.  相似文献   

14.
Alzheimer’s disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and may result from multiple etiologic factors, including environmental, genetic and metabolic factors, whereas FAD is caused by mutations of presenilins or amyloid-β (Aβ) precursor protein (APP). A commonly used mouse model for AD is 3xTg-AD mouse, which is generated by over-expression of mutated presenilin 1, APP and tau in the brain and thus represents a mouse model of FAD. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), icv-STZ mouse, shows many aspects of SAD. Despite the wide use of these two models for AD research, differences in gene expression between them are not known. Here, we compared the expression of 84 AD-related genes in the hippocampus and the cerebral cortex between icv-STZ mice and 3xTg-AD mice using a custom-designed qPCR array. These genes are involved in APP processing, tau/cytoskeleton, synapse function, apoptosis and autophagy, AD-related protein kinases, glucose metabolism, insulin signaling, and mTOR pathway. We found altered expression of around 20 genes in both mouse models, which affected each of above categories. Many of these gene alterations were consistent with what was observed in AD brain previously. The expression of most of these altered genes was decreased or tended to be decreased in the hippocampus of both mouse models. Significant diversity in gene expression was found in the cerebral cortex between these two AD mouse models. More genes related to synaptic function were dysregulated in the 3xTg-AD mice, whereas more genes related to insulin signaling and glucose metabolism were down-regulated in the icv-STZ mice. The present study provides important fundamental knowledge of these two AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.  相似文献   

15.
Active or passive immunization against the beta-amyloid peptide (Abeta) has been proposed as a method for preventing and/or treating Alzheimer's disease (AD). In addition to lowering brain Abeta and amyloid burden in transgenic mouse models of AD, a beneficial effect of immunization on previously characterized memory impairment(s) has also been reported in these mice. Whether these preclinical data will predict efficacy in AD patients remains to be seen. A clinical trial of active immunization (vaccination) was halted, owing to a serious adverse event (meningoencephalitis), raising questions about the safety of this approach. Two recent reports suggest that immunotherapy-based approaches to treating and preventing AD will require careful antigen and antibody selection, to maximize efficacy and minimize serious adverse events. However, given the potential efficacy of this approach, we believe that immunotherapy for AD should not be prematurely abandoned.  相似文献   

16.
Neurofilament proteins synthesized in the cell body of neurons are assembled and transported into axons, where they influence axon radial growth, axonal transport, and nerve conduction velocities. In diseased states, neurofilaments accumulate in cell bodies and proximal axons of affected neurons, and these lesions are characteristic of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), spinal muscular atrophy (SMA), Charcot-Marie-Tooth disease type 2 (CMT2), and hereditary sensory motor neuropathy. Although the molecular mechanisms that contribute to these accumulations are not yet identified, transgenic mouse models are beginning to provide insight into the role of neurofilament transport in disease-related dysfunction of neurons. This review addresses axonal transport in mouse models of ALS and the special significance of neurofilament transport in this disease.  相似文献   

17.
While Alzheimer's disease (AD) is traditionally associated with deficits in episodic memory, early changes in other cognitive domains, such as attention, have been gaining interest. In line with clinical observations, some animal models of AD have been shown to develop attentional deficits, but this is not consistent across all models. The APPswe/PS1ΔE9 (APP/PS1) mouse is one of the most commonly used AD models and attention has not yet been scrutinised in this model. We set out to assess attention using the 5-choice serial reaction time task (5CSRTT) early in the progression of cognitive symptoms in APP/PS1 mice, using clinically translatable touchscreen chambers. APP/PS1 mice showed no attentional changes across 5CSRTT training or any probes from 9 to 11 months of age. Interestingly, APP/PS1 mice showed increased impulsive and compulsive responding when task difficulty was high. This suggests that while the APP/PS1 mouse model may not be a good model of attentional changes in AD, it may be useful to study the early changes in impulsive and compulsive behaviour that have been identified in patient studies. As these changes have not previously been reported without attentional deficits in the clinic, the APP/PS1 mouse model may provide a unique opportunity to study these specific behavioural changes seen in AD, including their mechanistic underpinnings and therapeutic implications.  相似文献   

18.
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease affecting thousands of people in the world and effective treatment is still not available. Over two decades of intense research using AD postmortem brains, transgenic mouse and cell models of amyloid precursor protein and tau revealed that amyloid beta (Aβ) and hyperphosphorylated tau are synergistically involved in triggering disease progression. Accumulating evidence also revealed that aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction initiate and contributes to the development and progression of the disease. The purpose of this article is to summarize the latest progress in aging and AD, with a special emphasis on the mitochondria, oxidative DNA damage including methods of its measurement. It also discusses the therapeutic approaches against oxidative DNA damage and treatment strategies in AD.  相似文献   

19.
In the past years, major efforts have been made to understand the genetics and molecular pathogenesis of Alzheimer??s disease (AD), which has been translated into extensive experimental approaches aimed at slowing down or halting disease progression. Advances in transgenic (Tg) technologies allowed the engineering of different mouse models of AD recapitulating a range of AD-like features. These Tg models provided excellent opportunities to analyze the bases for the temporal evolution of the disease. Several lines of evidence point to synaptic dysfunction as a cause of AD and that synapse loss is a pathological correlate associated with cognitive decline. Therefore, the phenotypic characterization of these animals has included electrophysiological studies to analyze hippocampal synaptic transmission and long-term potentiation, a widely recognized cellular model for learning and memory. Transgenic mice, along with non-Tg models derived mainly from exogenous application of A??, have also been useful experimental tools to test the various therapeutic approaches. As a result, numerous pharmacological interventions have been reported to attenuate synaptic dysfunction and improve behavior in the different AD models. To date, however, very few of these findings have resulted in target validation or successful translation into disease-modifying compounds in humans. Here, we will briefly review the synaptic alterations across the different animal models and we will recapitulate the pharmacological strategies aimed at rescuing hippocampal plasticity phenotypes. Finally, we will highlight intrinsic limitations in the use of experimental systems and related challenges in translating preclinical studies into human clinical trials.  相似文献   

20.
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders in humans. They are characterized by insoluble protein deposits; beta-amyloid plaques and tau-containing neurofibrillary lesions in AD, and alpha-synuclein-containing Lewy bodies in PD. As a significant percentage of patients have clinical and pathological features of both diseases, the patho-cascades of the two diseases might overlap. For the first time, new animal models that express multiple transgenes provide the tools to dissect the pathogenic pathways and to differentiate between additive and synergistic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号