首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Evidence of the source of carcass contamination of pigs at slaughter was obtained by determining presumptive coliform counts on faeces and on carcass surfaces, and comparing the O-serotypes and antibiotic sensitivity patterns of Escherichia coli from both sites. All of the 16 pig carcasses from the slaughter line of a commercial abattoir were contaminated with presumptive coliform bacilli on most sites examined; the carcasses of six out of eight pigs slaughtered at the Meat Research Institute (MRI) abattoir were also contaminated, but only small numbers of coliforms could be detected on a few of the sites. The proportion of O-serotypes of E. coli present in faeces which were also detected on carcass surfaces, indicating faecal contamination, varied between 0 and 8.6% in MRI slaughtered pigs but reached 66.6% in one group of commercially slaughtered pigs. O-serotypes found on carcass surfaces but not in the faeces of the pigs, were used as an indication of environmental contamination and this was very evident in the commercially slaughtered pigs. A high proportion of E. coli O-serotypes in the gut were resistant to antibiotics and these were also often found on the carcass surface and, since the range of O-serotypes in the pig is similar to that reported in man, the pig must be considered to be a potential reservoir of antibiotic resistant E. coli for man.  相似文献   

3.
Presumptive coliform counts and the distribution of Escherichia coli O-serotypes were investigated in chicken rectal contents (175) abdominal cavities (152) and on the carcasses of 44 which had been commercially raised, slaughtered and prepared for sale. Large numbers of E. coli resistant to at least one antibacterial agent were found at each site; comparison of the O-serotypes suggested heavy contamination of the carcass with strains from the gut. The range of O-serotypes was similar to that found in man and some public health implications of cross-infection particularly by handling uncooked birds in the kitchen, are discussed.  相似文献   

4.
5.
Fermentation patterns of Escherichia coli with and without the phosphoenolpyruvate carboxylase (PPC) and pyruvate carboxylase (PYC) enzymes were compared under anaerobic conditions with glucose as a carbon source. Time profiles of glucose and fermentation product concentrations were determined and used to calculate metabolic fluxes through central carbon pathways during exponential cell growth. The presence of the Rhizobium etli pyc gene in E. coli (JCL1242/pTrc99A-pyc) restored the succinate producing ability of E. coli ppc null mutants (JCL1242), with PYC competing favorably with both pyruvate formate lyase and lactate dehydrogenase. Succinate formation was slightly greater by JCL1242/pTrc99A-pyc than by cells which overproduced PPC (JCL1242/pPC201, ppc+), even though PPC activity in cell extracts of JCL1242/pPC201 (ppc+) was 40-fold greater than PYC activity in extracts of JCL1242/pTrc99a-pyc. Flux calculations indicate that during anaerobic metabolism the pyc+ strain had a 34% greater specific glucose consumption rate, a 37% greater specific rate of ATP formation, and a 6% greater specific growth rate compared to the ppc+ strain. In light of the important position of pyruvate at the juncture of NADH-generating pathways and NADH-dissimilating branches, the results show that when PPC or PYC is expressed, the metabolic network adapts by altering the flux to lactate and the molar ratio of ethanol to acetate formation.  相似文献   

6.
7.
Healthy ruminants are the main reservoir of Shiga toxin-producing Escherichia coli (STEC). During their transit through the ruminant gastrointestinal tract, STEC encounters a number of acidic environments. As all STEC strains are not equally resistant to acidic conditions, the purpose of this study was to investigate whether acid resistance confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. We found that acid-resistant STEC survived at higher rates during prolonged incubation in rumen fluid than acid-sensitive STEC and that they resisted the highly acidic conditions of the abomasum fluid, whereas acid-sensitive strains were killed. However, transit through the rumen contents allowed acid-sensitive strains to survive in the abomasum fluid at levels similar to those of acid-resistant STEC. The acid resistance status of the strains had little influence on STEC growth in jejunal and cecal contents. Supplementation with the probiotic Saccharomyces cerevisiae CNCM I-1077 or Lactobacillus acidophilus BT-1386 led to killing of all of the strains tested during prolonged incubation in the rumen contents, but it did not have any influence in the other digestive compartments. In addition, S. cerevisiae did not limit the induction of acid resistance in the rumen fluid. Our results indicate that the rumen compartment could be a relevant target for intervention strategies that could both limit STEC survival and eliminate induction of acid resistance mechanisms in order to decrease the number of viable STEC cells reaching the hindgut and thus STEC shedding and food contamination.Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens that cause human diseases ranging from uncomplicated diarrhea to hemorrhagic colitis (HC), as well as life-threatening complications, such as hemolytic-uremic syndrome (HUS). Most outbreaks and sporadic cases of HC and HUS have been attributed to O157:H7 STEC (http://www.cdc.gov/ecoli/outbreaks.html; http://www.euro.who.int). However, in some geographic areas, non-O157:H7 STEC infections are considered to be at least as important as E. coli O157:H7 infections, but they are often underdiagnosed (21, 46). In spite of diverse virulence characteristics, one common trait of pathogenic STEC strains could be resistance to the gastric acidity in humans. Indeed, it has been suggested that acid resistance of E. coli O157:H7 is negatively correlated with the infectious dose required for this organism to cause disease in humans (17).Healthy cattle and other ruminants appear to be the main reservoir of STEC strains. However, colonization of the cattle gastrointestinal tract (GIT) by STEC seems to be a transient event, with a mean duration of 14 days to 1 month (4, 8, 38). The site of STEC persistence and proliferation in the GIT depends on the STEC strain and seems to vary from one individual to another. Some previous studies identified the rumen as the primary site of colonization (8), whereas other studies referred to the cecum, the colon, or the rectum (10, 18, 23, 32, 42). Although STEC strains adhere in vitro to bovine colonic mucosa, forming the characteristic attaching and effacing lesions (35), they are very rarely associated with tissues in animal carriers and are generally isolated from the digesta (8). STEC does not, therefore, seem to colonize the gut mucosa, except for the anorectal mucosa, which has been described as the preferred colonization site for O157:H7 strains but not for non-O157:H7 strains (24, 32). During their transit through the ruminant GIT, STEC strains encounter various acidic conditions. Volatile fatty acid (VFA) concentrations are high in the rumen of grain-fed animals, and the pH may vary from 5.0 to 6.5. In these conditions, VFAs are in the undissociated form and can freely enter the bacterial cells, dissociate, and acidify the cytosol. In hay-fed animals, less fermentation occurs in the rumen, and the pH remains between 6.5 and 7. In the abomasum, STEC encounters strongly acidic conditions, regardless of the diet, due to the presence of mineral acids, resulting in a pH below 3. Then the pH increases from the proximal part to the distal part of the small intestine, and in the cecum and the colon STEC encounters more neutral pH conditions.All STEC strains are not equally resistant to acidic conditions (2, 9, 30, 45). Therefore, it could be hypothesized that acid-resistant (AR) STEC survives and persists better in the GIT of ruminants than acid-sensitive (AS) STEC. Acid resistance mechanisms can be induced during exposure to a moderately acidic environment (12, 26, 41). The rumen contents of a grain-fed animal could be such an environment favorable for the induction of acid resistance in STEC. While the diet does not seem to affect the acid resistance of an E. coli O157:H7 strain (19), grain feeding increases the number of acid-resistant generic coliforms (15, 19), either by inducing acid resistance mechanisms in the rumen or by selecting acid-resistant E. coli strains during passage through the abomasum. Hence, generic coliforms behave differently than E. coli O157:H7 in ruminants (19), and the potential ecological advantage conferred by acid resistance to non-O157:H7 STEC strains for persistence in the ruminant GIT has never been investigated.Inhibition of STEC proliferation in the ruminant gut may be mediated through probiotic supplementation. Several studies have demonstrated the capacity of certain lactic acid bacteria or yeast to reduce E. coli O157:H7 counts in vitro (1, 34) or in vivo (5, 40). The mechanisms of action of probiotics are not well characterized but could involve competition for nutrients and adhesion sites in the GIT, an increase in the VFA concentration and a decrease in the pH, production of antimicrobial molecules, or interference with quorum-sensing signaling (27-29). However, the impact of probiotics on non-O157:H7 STEC has been poorly investigated (36). Although not all non-O157:H7 STEC strains are pathogenic, limiting their carriage by ruminants should decrease the risk of food-borne illness. The impact of probiotics and of the physicochemical conditions of the rumen digesta on the survival of non-O157:H7 STEC strains or on induction of acid resistance mechanisms could have significant implications for farm management practices and food safety.The purpose of this work was to investigate whether the level of acid resistance, determined using an in vitro assay, confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. Moreover, we evaluated the potential of probiotics to limit STEC survival and induction of acid resistance in the ruminant GIT.  相似文献   

8.
Bacteriophage-like particles were found in the supernatant fluids of Escherichia coli O111a and O111:B(4). Caution is urged in the study of deoxyribonucleic acid synthesis and replication in these strains.  相似文献   

9.
Escherichia coli dam mutants, lacking the GATC DNA methylase, do not produce anucleate cells at high frequencies, suggesting that hemimethylation of the chromosome origin of replication, oriC, is not essential for correct chromosome partitioning.  相似文献   

10.
Absence of oligomeric murein intermediates in Escherichia coli.   总被引:4,自引:2,他引:2  
The intermediates in the biosynthetic pathway of murein were examined in two strains of Escherichia coli to determine whether they synthesized oligomeric precursors in vivo. No oligomeric precursors could be detected; the only intermediates found were the previously described UDP-N-acetylmuramyl peptides, and the two lipid-linked compounds, N-acetylglucosamyl-N-acetylmuramyl-(pentapeptide)-pyrophosphoryl-undecaprenol and N-acetylmuramyl-(pentapeptide)-pyrophosphoryl-undecaprenol. It was concluded that lipid-linked monomers are directly incorporated into the murein sacculus in vivo and do not pass through an oligomeric stage.  相似文献   

11.
Fluctuations in rotation rate of the flagellar motor of Escherichia coli.   总被引:1,自引:1,他引:0  
The purpose of this work was to study the changes in rotation rate of the bacterial motor and to try to discriminate between various sources of these changes with the aim of understanding the mechanism of force generation better. To this end Escherichia coli cells were tethered and videotaped with brief stroboscopic light flashes. The records were scanned by means of a computerized motion analysis system, yielding cell size, radius of rotation, and accumulated angle of rotation as functions of time for each cell selected. In conformity with previous studies, fluctuations in the rotation rate of the flagellar motor were invariably found. Employing an exclusively counterclockwise rotating mutant ("gutted" RP1091 strain) and using power spectral density, autocorrelation and residual mean square angle analysis, we found that a simple superposition of rotational diffusion on a steady rotary motion is insufficient to describe the observed rotation. We observed two additional rotational components, one fluctuating (0.04-0.6 s) and one oscillating (0.8-7 s). However, the effective rotational diffusion coefficient obtained after taking these two components into account generally exceeded that calculated from external friction by two orders of magnitude. This is consistent with a model incorporating association and dissociation of force-generating units.  相似文献   

12.
13.
Biofilms are considered to be highly resistant to antimicrobial agents. Several mechanisms have been proposed to explain this high resistance of biofilms, including restricted penetration of antimicrobial agents into biofilms, slow growth owing to nutrient limitation, expression of genes involved in the general stress response, and emergence of a biofilm-specific phenotype. However, since combinations of these factors are involved in most biofilm studies, it is still difficult to fully understand the mechanisms of biofilm resistance to antibiotics. In this study, the antibiotic susceptibility of Escherichia coli cells in biofilms was investigated with exclusion of the effects of the restricted penetration of antimicrobial agents into biofilms and the slow growth owing to nutrient limitation. Three different antibiotics, ampicillin (100 μg/ml), kanamycin (25 μg/ml), and ofloxacin (10 μg/ml), were applied directly to cells in the deeper layers of mature biofilms that developed in flow cells after removal of the surface layers of the biofilms. The results of the antibiotic treatment analyses revealed that ofloxacin and kanamycin were effective against biofilm cells, whereas ampicillin did not kill the cells, resulting in regrowth of the biofilm after the ampicillin treatment was discontinued. LIVE/DEAD staining revealed that a small fraction of resistant cells emerged in the deeper layers of the mature biofilms and that these cells were still alive even after 24 h of ampicillin treatment. Furthermore, to determine which genes in the biofilm cells are induced, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. The results showed that significant changes in gene expression occurred during biofilm formation, which were partly induced by rpoS expression. Based on the experimental data, it is likely that the observed resistance of biofilms can be attributed to formation of ampicillin-resistant subpopulations in the deeper layers of mature biofilms but not in young colony biofilms and that the production and resistance of the subpopulations were aided by biofilm-specific phenotypes, like slow growth and induction of rpoS-mediated stress responses.Reduced susceptibility of biofilm bacteria to antimicrobial agents is a crucial problem for treatment of chronic infections (11, 29, 48). It has been estimated that 65% of microbial infections are associated with biofilms (11, 29, 37), and biofilm cells are 100 to 1,000 times more resistant to antimicrobial agents than planktonic bacterial cells (11, 29, 32).The molecular nature of this apparent resistance has not been elucidated well, and a number of mechanisms have been proposed to explain the reduced susceptibility, such as restricted antibiotic penetration (47), decreased growth rates and metabolism (7, 52), quorum sensing and induction of a biofilm-specific phenotype (8, 29, 35, 39, 49), stress response activation (7, 52), and an increase in expression of efflux pumps (14). Biofilm resistance has generally been assumed to be due to the fact that the cells in the deeper layers of thick biofilms, which grow more slowly, have less access to antibiotics and nutrients. However, this is not the only reason in many cases. Familiar mechanisms of antibiotic resistance, such as modifying enzymes and target mutations, do not seem to be responsible for the biofilm resistance. Even sensitive bacteria that do not have a known genetic basis for resistance can exhibit profoundly reduced susceptibility when they form biofilms (48).It was reported previously that changes in gene expression induced a biofilm-specific phenotype (5, 13, 22, 35, 41, 42). Several genes have been proposed to be particularly important for biofilm formation, and the importance of the rpoS gene in Escherichia coli biofilm formation was suggested recently (1, 10, 22, 42). It has been suggested that induction of an rpoS-mediated stress response results in physiological changes that could contribute to antibiotic resistance (29). Although several mechanisms and genes have been proposed to explain biofilm resistance to antibiotics, this resistance is not still fully understood because these mechanisms seem to work together within a biofilm community. In addition, the physiology of biofilm cells is remarkably heterogeneous and varies according to the location of individual cells within biofilms (33, 34, 46).In this study, susceptibility of E. coli cells in biofilms to antibiotics was investigated. The E. coli cells in the deeper layers of mature biofilms were directly treated with three antibiotics with different molecular targets, the β-lactam ampicillin, the aminoglycoside kanamycin, and the fluoroquinolone ofloxacin. The biofilm biomass was removed before antibiotic treatment, and only the cells located in the deeper layers of the mature biofilms were directly exposed to antibiotics; thus, the effects of restricted antibiotic and nutrient penetration, as well as heterogeneous physiological states in biofilms, were reduced. Although ofloxacin and kanamycin effectively killed the biofilm cells, ampicillin could not kill the cells, which led to regrowth of biofilms. However, the cells in young colony biofilms were completely killed by ampicillin. Therefore, to determine which genes are induced in the mature biofilm cells, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. Based on the experimental data obtained, possible mechanisms of the increased biofilm resistance to ampicillin are discussed below.  相似文献   

14.
Chemical genomics expands our understanding of microbial tolerance to inhibitory chemicals, but its scope is often limited by the throughput of genome-scale library construction and genotype-phenotype mapping. Here we report a method for rapid, parallel, and deep characterization of the response to antibiotics in Escherichia coli using a barcoded genome-scale library, next-generation sequencing, and streamlined bioinformatics software. The method provides quantitative growth data (over 200,000 measurements) and identifies contributing antimicrobial resistance and susceptibility alleles. Using multivariate analysis, we also find that subtle differences in the population responses resonate across multiple levels of functional hierarchy. Finally, we use machine learning to identify a unique allelic and proteomic fingerprint for each antibiotic. The method can be broadly applied to tolerance for any chemical from toxic metabolites to next-generation biofuels and antibiotics.  相似文献   

15.
16.
17.
The effects of mitomycin C on cell elongation of Escherichia coli B were studied. Filament formation was most marked in cultures treated with a moderate level (1 mug/ml) of the antibiotic, becoming less obvious at higher levels (10 mug/ml). Cells treated with a bacteriostatic concentration (0.1 mug/ml or less) of mitomycin C were also significantly elongated. The filamentous or elongated cells appeared to lack septa, since their spheroplasts were considerably larger than those formed from normal cells. The appearance of empty spheres also indicated some defects in the surfaces of the filamentous cells. Electron micrographs of the filaments revealed a characteristic difference in the arrangement of the nuclei in the filaments formed in the presence of low (0.1 mug/ml) and high (5 mug/ml) concentrations of mitomycin C. The filaments formed by the low level of mitomycin C had normal well-defined nuclear bodies distributed along the long axis, whereas those formed by the elevated level of the antibiotic contained smaller nuclei. The latter were characteristically confined to the center of the cells and did not extend out to the tips of the filaments.  相似文献   

18.
19.
When exposed to oxidation, algae release dissolved organic matter with significant carbohydrate (52%) and biodegradable (55 to 74%) fractions. This study examined whether algal organic matter (AOM) added in drinking water can compromise water biological stability by supporting bacterial survival. Escherichia coli (1.3 × 105 cells ml−1) was inoculated in sterile dechlorinated tap water supplemented with various qualities of organic substrate, such as the organic matter coming from chlorinated algae, ozonated algae, and acetate (model molecule) to add 0.2 ± 0.1 mg of biodegradable dissolved organic carbon (BDOC) liter−1. Despite equivalent levels of BDOC, E. coli behavior depended on the source of the added organic matter. The addition of AOM from chlorinated algae led to an E. coli growth equivalent to that in nonsupplemented tap water; the addition of AOM from ozonated algae allowed a 4- to 12-fold increase in E. coli proliferation compared to nonsupplemented tap water. Under our experimental conditions, 0.1 mg of algal BDOC was sufficient to support E. coli growth, whereas the 0.7 mg of BDOC liter−1 initially present in drinking water and an additional 0.2 mg of BDOC acetate liter−1 were not sufficient. Better maintenance of E. coli cultivability was also observed when AOM was added; cultivability was even increased after addition of AOM from ozonated algae. AOM, likely to be present in treatment plants during algal blooms, and thus potentially in the treated water may compromise water biological stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号