首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

Background

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay.

Results

A total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%.

Conclusions

Despite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.  相似文献   

2.
3.

Background

Sugarcane genetic mapping has lagged behind other crops due to its complex autopolyploid genome structure. Modern sugarcane cultivars have from 110-120 chromosomes and are in general interspecific hybrids between two species with different basic chromosome numbers: Saccharum officinarum (2n = 80) with a basic chromosome number of 10 and S. spontaneum (2n = 40-128) with a basic chromosome number of 8. The first maps that were constructed utilised the single dose (SD) markers generated using RFLP, more recent maps generated using AFLP and SSRs provided at most 60% genome coverage. Diversity Array Technology (DArT) markers are high throughput allowing greater numbers of markers to be generated.

Results

Progeny from a cross between a sugarcane variety Q165 and a S. officinarum accession IJ76-514 were used to generate 2467 SD markers. A genetic map of Q165 was generated containing 2267 markers, These markers formed 160 linkage groups (LGs) of which 147 could be placed using allelic information into the eight basic homology groups (HGs) of sugarcane. The HGs contained from 13 to 23 LGs and from 204 to 475 markers with a total map length of 9774.4 cM and an average density of one marker every 4.3 cM. Each homology group contained on average 280 markers of which 43% were DArT markers 31% AFLP, 16% SSRs and 6% SNP markers. The multi-allelic SSR and SNP markers were used to place the LGs into HGs.

Conclusions

The DArT array has allowed us to generate and map a larger number of markers than ever before and consequently to map a larger portion of the sugarcane genome. This larger number of markers has enabled 92% of the LGs to be placed into the 8 HGs that represent the basic chromosome number of the ancestral species, S. spontaneum. There were two HGs (HG2 and 8) that contained larger numbers of LGs verifying the alignment of two sets of S. officinarum chromosomes with one set of S. spontaneum chromosomes and explaining the difference in basic chromosome number between the two ancestral species. There was also evidence of more complex structural differences between the two ancestral species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-152) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.

Background

A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca ‘Hawaii 4’ reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array.

Results

About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing “haploSNPs” (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative “codon-based” SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix’s “SNPolisher” R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family ‘Holiday’ × ‘Korona’ with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM.

Conclusions

The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array’s high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1310-1) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Previous studies showed that single nucleotide polymorphisms (SNPs) in the HLA-DP, TCF19 and EHMT2 genes may affect the chronic hepatitis B (CHB). To predict the degree of risk for chronicity of HBV, this study determined associations with these SNPs.

Methods

The participants for this study were defined into 4 groups; HCC (n = 230), CHB (n = 219), resolved HBV infection (n = 113) and HBV uninfected subjects (n = 123). The HLA-DP SNPs (rs3077, rs9277378 and rs3128917), TCF19 SNP (rs1419881) and EHMT2 SNP (rs652888) were genotyped.

Results

Due to similar distribution of genotype frequencies in HCC and CHB, we combined these two groups (HBV carriers). The genotype distribution in HBV carriers relative to those who resolved HBV showed that rs3077 and rs9277378 were significantly associated with protective effects against CHB in minor dominant model (OR = 0.45, p<0.001 and OR = 0.47, p<0.001). The other SNPs rs3128917, rs1419881 and rs652888 were not associated with HBV carriers.

Conclusions

Genetic variations of rs3077 and rs9277378, but not rs3128917, rs1419881 and rs652888, were significantly associated with HBV carriers relative to resolved HBV in Thai population.  相似文献   

7.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

Homoeologous sequences pose a particular challenge if bacterial artificial chromosome (BAC) contigs shall be established for specific regions of an allopolyploid genome. Single nucleotide polymorphisms (SNPs) differentiating between homoeologous genomes (intergenomic SNPs) may represent a suitable screening tool for such purposes, since they do not only identify homoeologous sequences but also differentiate between them.

Results

Sequence alignments between Brassica rapa (AA) and Brassica oleracea (CC) sequences mapping to corresponding regions on chromosomes A1 and C1, respectively were used to identify single nucleotide polymorphisms between the A and C genomes. A large fraction of these polymorphisms was also present in Brassica napus (AACC), an allopolyploid species that originated from hybridisation of A and C genome species. Intergenomic SNPs mapping throughout homoeologous chromosome segments spanning approximately one Mbp each were included in Illumina’s GoldenGate® Genotyping Assay and used to screen multidimensional pools of a Brassica napus bacterial artificial chromosome library with tenfold genome coverage. Based on the results of 50 SNP assays, a BAC contig for the Brassica napus A subgenome was established that spanned the entire region of interest. The C subgenome region was represented in three BAC contigs.

Conclusions

This proof-of-concept study shows that sequence resources of diploid progenitor genomes can be used to deduce intergenomic SNPs suitable for multiplex polymerase chain reaction (PCR)-based screening of multidimensional BAC pools of a polyploid organism. Owing to their high abundance and ease of identification, intergenomic SNPs represent a versatile tool to establish BAC contigs for homoeologous regions of a polyploid genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-560) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Chronic obstructive pulmonary disease (COPD) is characterized by expiratory flow limitation, causing air trapping and lung hyperinflation. Hyperinflation leads to reduced exercise tolerance and poor quality of life in COPD patients. Total lung capacity (TLC) is an indicator of hyperinflation particularly in subjects with moderate-to-severe airflow obstruction. The aim of our study was to identify genetic variants associated with TLC in COPD.

Methods

We performed genome-wide association studies (GWASs) in white subjects from three cohorts: the COPDGene Study; the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); and GenKOLS (Bergen, Norway). All subjects were current or ex-smokers with at least moderate airflow obstruction, defined by a ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC) <0.7 and FEV1 < 80% predicted on post-bronchodilator spirometry. TLC was calculated by using volumetric computed tomography scans at full inspiration (TLCCT). Genotyping in each cohort was completed, with statistical imputation of additional markers. To find genetic variants associated with TLCCT, linear regression models were used, with adjustment for age, sex, pack-years of smoking, height, and principal components for genetic ancestry. Results were summarized using fixed-effect meta-analysis.

Results

Analysis of a total of 4,543 COPD subjects identified one genome-wide significant locus on chromosome 5p15.2 (rs114929486, β = 0.42L, P = 4.66 × 10−8).

Conclusions

In COPD, TLCCT was associated with a SNP in dynein, axonemal, heavy chain 5 (DNAH5), a gene in which genetic variants can cause primary ciliary dyskinesia. DNAH5 could have an effect on hyperinflation in COPD.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0097-y) contains supplementary material, which is available to authorized users.  相似文献   

10.

Purpose

A recent large genome-wide association study (GWAS) identified multiple variants associated with primary angle-closure glaucoma (PACG). The present study investigated the role of these variants in two cohorts with PACG recruited from Australia and Nepal.

Method

Patients with PACG and appropriate controls were recruited from eye clinics in Australia (n = 232 cases and n = 288 controls) and Nepal (n = 106 cases and 204 controls). Single nucleotide polymorphisms (SNPs) rs3753841 (COL11A1), rs1015213 (located between PCMTD1 and ST18), rs11024102 (PLEKHA7), and rs3788317 (TXNRD2) were selected and genotyped on the Sequenom. Analyses were conducted using PLINK and METAL.

Results

After adjustment for age and sex, SNP rs3753841 was found to be significantly associated with PACG in the Australian cohort (p = 0.017; OR = 1.34). SNPs rs1015213 (p = 0.014; OR 2.35) and rs11024102 (p = 0.039; OR 1.43) were significantly associated with the disease development in the Nepalese cohort. None of these SNPs survived Bonferroni correction (p = 0.05/4 = 0.013). However, in the combined analysis, of both cohorts, rs3753841 and rs1015213 showed significant association with p-values of 0.009 and 0.004, respectively both surviving Bonferroni correction. SNP rs11024102 showed suggestive association with PACG (p-value 0.035) and no association was found with rs3788317.

Conclusion

The present results support the initial GWAS findings, and confirm the SNP’s contribution to PACG. This is the first study to investigate these loci in both Australian Caucasian and Nepalese populations.  相似文献   

11.

Background

Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding.

Results

SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. ‘SNP_only’ markers accounted for 89.25 % of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9 %, and their LOD scores varied from 3.22 to 4.04.

Conclusions

High-density genetic maps for walnut containing 16 LGs were constructed using the SLAF-seq method with an F1 population. One QTL for walnut anthracnose resistance was identified based on the map. The results will aid molecular marker-assisted breeding and walnut resistance genes identification.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1822-8) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Gastric cancer exhibits familial clustering, and gastric cancer familial relatives (GCF) tend to present with corpus-predominant gastritis and precancerous lesions as SPEM or IM after H. pylori infection. The study determined whether the children of gastric cancer patients (GCA) had genomic single nucleotide polymorphisms (SNPs) predisposed to the gastric precancerous lesions as spasmolytic polypeptide-expressing metaplasia (SPEM) or intestinal metaplasia (IM).

Results

There were 389 family relatives of 193 non-cardiac GCA and 173 duodenal ulcer patients (DU), received blood sampling for DNA collection. The differences of the risk alleles of SNPs in the ITGA5, ITGB1, IL-10, COX-2, RUNX3, and TFF2 genes were compared between 195 children of GCA and 143 DU. The children of GCA had higher allele frequencies of ITGA5-1160 T-carrier (P = 0.006, OR[95% CI] = 2.2[1.2-4]), ITGB1-1949 A-carrier (P = 0.047; OR[95% CI] = 2.8[1.4-5.3]), ITGB1 + 31804 C-carrier (P = 0.013; OR[95% CI] = 4.7[1.7-13.0]), IL-10-592 AA (P = 0.014; OR[95% CI] = 2.3[1.4-4.0]) and COX-2-1195 G-carrier (P = 0.019; OR[95% CI] = 1.7[0.9-3.2]) than DU. The combined genotype with ITGA5-1160/ITGB1-1949/ITGB1 + 31804 as T/A/C carriers and COX-2-1195/IL-10-592 as G-carrier/AA was more prevalent in the children of GCA than in DU (P < 1×10−4), and predisposed with a 5.3-fold risk of getting SPEM in the H. pylori-infected children of GCA (P = 0.016). Such risk of getting SPEM increased to 112 folds, if combined with RUNX3 + 492/TFF2-308 as A-carrier/CC in this limited study scale (P = 1×10−4).

Conclusions

The SNPs of ITGA5-1160/ITGB1-1949/ ITGB1 + 31804 as T/A/C carriers and COX-2-1195/IL-10-592 as G-carrier/AA, or more specific to combine RUNX3 + 492/TFF2-308 as A-carrier/CC shall be host factor predisposing to gastric cancer during H. pylori infection, and serve as marker to identify high-risk subjects for H. pylori eradication.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0121-7) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

A large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication.

Results

We examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model.

Conclusions

Information concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-767) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Recent studies have confirmed the presence of viable Chlamydia in the bronchoalveolar lavage (BAL) fluid of pediatric patients with airway hyperresponsiveness. While specific IgG and IgM responses to C. pneumoniae are well described, the response and potential contribution of Ag-specific IgE are not known. The current study sought to determine if infection with Chlamydia triggers the production of pathogen-specific IgE in children with chronic respiratory diseases which might contribute to inflammation and pathology.

Methods

We obtained BAL fluid and serum from pediatric respiratory disease patients who were generally unresponsive to corticosteroid treatment as well as sera from age-matched control patients who saw their doctor for wellness checkups. Chlamydia-specific IgE was isolated from BAL and serum samples and their specificity determined by Western blot techniques. The presence of Chlamydia was confirmed by species-specific PCR and BAL culture assays.

Results

Chlamydial DNA was detected in the BAL fluid of 134/197 (68%) patients. Total IgE increased with age until 15 years old and then decreased. Chlamydia-specific IgE was detected in the serum and/or BAL of 107/197 (54%) patients suffering from chronic respiratory disease, but in none of the 35 healthy control sera (p < 0.0001). Of the 74 BAL culture-positive patients, 68 (91.9%, p = 0.0001) tested positive for Chlamydia-specific IgE. Asthmatic patients had significantly higher IgE levels compared to non-asthmatics (p = 0.0001). Patients who were positive for Chlamydia DNA or culture had significantly higher levels of serum IgE compared to negative patients (p = 0.0071 and p = 0.0001 respectively). Only 6 chlamydial antigens induced Chlamydia-specific IgE and patients with C. pneumoniae-specific IgE had significantly greater levels of total IgE compared to C. pneumoniae-specific IgE negative ones (p = 0.0001).

Conclusions

IgE antibodies play a central role in allergic inflammation; therefore production of Chlamydia-specific IgE may prove significant in the exacerbation of chronic, allergic airway diseases, thus highlighting a direct role for Chlamydia in asthma pathogenesis.  相似文献   

15.

Background

Matrix metalloproteinases (MMPs) and C-reactive protein (CRP) are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. The aim of the present work was to determine plasma concentrations of MMPs and CRP in COPD associated to biomass combustion exposure (BE) and tobacco smoking (TS).

Methods

Pulmonary function tests, plasma levels of MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP were measured in COPD associated to BE (n = 40) and TS (n =40) patients, and healthy non-smoking (NS) healthy women (controls, n = 40).

Results

Plasma levels of MMP-1, MMP-7, MMP-9, and MMP-9/TIMP-1 and CRP were higher in BE and TS than in the NS healthy women (p <0.01). An inverse correlation between MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP plasma concentrations and FEV1 was observed.

Conclusions

Increase of MMPs and CRP plasma concentrations in BE suggests a systemic inflammatory phenomenon similar to that observed in COPD associated to tobacco smoking, which may also play a role in COPD pathogenesis.  相似文献   

16.

Background

Two common clinical syndromes of acetylsalicylic acid (aspirin) hypersensitivity, aspirin-exacerbated respiratory disease (AERD) and aspirin-exacerbated cutaneous disease (AECD), were subjected to a genome-wide association study to identify strong genetic markers for aspirin hypersensitivity in a Korean population.

Methods

A comparison of SNP genotype frequencies on an Affymetrix Genome-Wide Human SNP array of 179 AERD patients and 1989 healthy normal control subjects (NC) revealed SNPs on chromosome 6 that were associated with AERD, but not AECD. To validate the association, we enrolled a second cohort comprising AERD (n = 264), NC (n = 238) and disease-control (aspirin tolerant asthma; ATA, n = 387) groups.

Results

The minor genotype frequency (AG or AA) of a particular SNP, rs3128965, in the HLA-DPB1 region was higher in the AERD group compared to the ATA or NC group (P = 0.001, P = 0.002, in a co-dominant analysis model, respectively). Comparison of rs3128965 alleles with the clinical features of asthmatics revealed that patients harboring the A allele had increased bronchial hyperresponsiveness to inhaled aspirin and methacholine, and higher 15-HETE levels, than those without the A allele (P = 0.039, 0.037, and 0.004, respectively).

Conclusions

This implies the potential of rs3128965 as a genetic marker for diagnosis and prediction of the AERD phenotype.  相似文献   

17.

Background

A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS).

Results

A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides.

Conclusions

The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1152) contains supplementary material, which is available to authorized users.  相似文献   

18.

Introduction

Microvascular damage and defective angiogenesis and vasculogenesis have a major role in the pathogenesis of systemic sclerosis (SSc). Epidermal growth factor-like domain 7 (EGFL7) is a proangiogenic molecule which is predominantly expressed and secreted by endothelial cells and their progenitors and controls vascular development and integrity. In this study, we investigated the possible involvement of EGFL7 in SSc.

Methods

Serum EGFL7 levels from 60 patients with SSc and 35 age- and sex-matched healthy controls were examined by colorimetric sandwich enzyme-linked immunosorbent assay. The expression of EGFL7 in forearm skin biopsies (n = 16 SSc, n = 10 controls), cultured dermal microvascular endothelial cells (MVECs) (n = 3 SSc, n = 3 controls) and late-outgrowth peripheral blood endothelial progenitor cell (EPC)-derived endothelial cells (n = 15 SSc, n = 8 controls) was investigated by immunofluorescence and Western blotting.

Results

Serum EGFL7 levels were detectable in 68.6% of healthy controls and 45% of SSc cases (P < 0.05). Circulating levels of EGFL7 were significantly decreased in SSc patients compared with healthy controls (P = 0.01). Serum levels of EGFL7 were significantly lower in both limited cutaneous SSc and diffuse cutaneous SSc patients than in controls (P = 0.02 and P = 0.04, respectively). In SSc, decreased serum EGFL7 levels were significantly correlated with the severity of nailfold capillary abnormalities. Patients with the most severe capillary changes and digital ulcers had serum EGFL7 levels significantly lower than healthy controls, while the EGFL7 levels did not differ significantly between controls and SSc patients with less capillary damage and lack of digital ulcers. Endothelial EGFL7 expression was strongly downregulated or even almost completely undetectable in SSc-affected dermis compared with controls (P < 0.001). In cultured SSc dermal MVECs and late-outgrowth peripheral blood EPC-derived endothelial cells, EGFL7 was significantly downregulated compared with cells obtained from healthy subjects (P < 0.01 and P < 0.001, respectively).

Conclusions

Our findings suggest that the loss of EGFL7 expression in endothelial cells and their progenitors might play a role in the development and progression of peripheral microvascular damage and the defective vascular repair process characteristic of SSc.  相似文献   

19.

Background

Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Although cigarette smoking is the primary risk factor for lung cancer, only 7% of female lung cancer patients in Taiwan have a history of smoking. Since cancer results from progressive accumulation of genetic aberrations, genomic rearrangements may be early events in carcinogenesis.

Results

In order to identify biomarkers of early-stage adenocarcinoma, the genome-wide DNA aberrations of 60 pairs of lung adenocarcinoma and adjacent normal lung tissue in non-smoking women were examined using Affymetrix Genome-Wide Human SNP 6.0 arrays. Common copy number variation (CNV) regions were identified by ≥30% of patients with copy number beyond 2 ± 0.5 of copy numbers for each single nucleotide polymorphism (SNP) and at least 100 continuous SNP variant loci. SNPs associated with lung adenocarcinoma were identified by McNemar’s test. Loss of heterozygosity (LOH) SNPs were identified in ≥18% of patients with LOH in the locus. Aberration of SNP rs10248565 at HDAC9 in chromosome 7p21.1 was identified from concurrent analyses of CNVs, SNPs, and LOH.

Conclusion

The results elucidate the genetic etiology of lung adenocarcinoma by demonstrating that SNP rs10248565 may be a potential biomarker of cancer susceptibility.  相似文献   

20.

Background

Idiopathic epilepsy is a common neurological disease in human and domestic dogs but relatively few risk genes have been identified to date. The seizure characteristics, including focal and generalised seizures, are similar between the two species, with gene discovery facilitated by the reduced genetic heterogeneity of purebred dogs. We have recently identified a risk locus for idiopathic epilepsy in the Belgian Shepherd breed on a 4.4 megabase region on CFA37.

Results

We have expanded a previous study replicating the association with a combined analysis of 157 cases and 179 controls in three additional breeds: Schipperke, Finnish Spitz and Beagle (pc = 2.9e–07, pGWAS = 1.74E-02). A targeted resequencing of the 4.4 megabase region in twelve Belgian Shepherd cases and twelve controls with opposite haplotypes identified 37 case-specific variants within the ADAM23 gene. Twenty-seven variants were validated in 285 cases and 355 controls from four breeds, resulting in a strong replication of the ADAM23 locus (praw = 2.76e–15) and the identification of a common 28 kb-risk haplotype in all four breeds. Risk haplotype was present in frequencies of 0.49–0.7 in the breeds, suggesting that ADAM23 is a low penetrance risk gene for canine epilepsy.

Conclusions

These results implicate ADAM23 in common canine idiopathic epilepsy, although the causative variant remains yet to be identified. ADAM23 plays a role in synaptic transmission and interacts with known epilepsy genes, LGI1 and LGI2, and should be considered as a candidate gene for human epilepsies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1651-9) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号