首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

2.
While the structuring role of fish in lakes is well studied for the summer season in North temperate lakes, little is known about their role in winter when fish activity and light irradiance potentially are lower. This is unfortunate as the progressing climate change may have strong effects on lake winter temperature and possibly on trophic dynamics too. We conducted an enclosure experiment with and without the presence of fish throughout winter in two shallow lakes with contrasting phosphorus concentrations. In hypertrophic Lake Søbygård, absence of fish led to higher biomass of zooplankton, higher grazing potential (zooplankton:phytoplankton ratio) and, accordingly, lower biomass of phytoplankton and chlorophyll a (Chl a), while the concentrations of total nitrogen (TN), total phosphorus (TP), oxygen and pH decreased. The average size of egg-bearing Daphnia and Bosmina and the minimum size of egg-bearing specimens of the two genera rose. In the less eutrophic Lake Stigsholm, zooplankton and their grazing potential were also markedly affected by fish. However, the decrease in Chl a was slight, and phytoplankton biovolume, pH and the oxygen concentration were not affected. TN was higher when fish were absent. Our results indicate that: (i) there is a notable effect of fish on zooplankton community structure and size during winter in both eutrophic and hypertrophic North temperate lakes, (ii) Chl a can be high in winter in such lakes, despite low light irradiance, if fish are abundant, and (iii) the cascading effects on phytoplankton and nutrients in winter may be more pronounced in hypertrophic lakes. Climate warming supposedly leading to reduced winter mortality and dominance of small fish may enhance the risk of turbid state conditions in nutrient-enriched shallow lakes, not only during the summer season, but also during winter.  相似文献   

3.
Stocking of filter-feeding fish is a common tool used in Chinese reservoirs to increase fish production because of low natural recruitment. Whether such stocking has important negative effects on zooplankton with cascading effects on phytoplankton is debated. We compared the zooplankton communities in fourteen reservoirs with different nutrient concentrations and fish densities. Both chlorophyll a (Chla) and fish catch were positively related with total phosphorus (TP), whereas zooplankton biomass did not show a similar relationship with TP. Zooplankton seemed to be influenced by fish as high fish catches coincided with a low proportion of calanoids of the total copepod biomass, a high proportion of rotifers of the total zooplankton biomass, a low zooplankton:phytoplankton biomass ratio, and the absence of Daphnia irrespective of TP concentration. Both zooplankton biomass and most of the zooplankton:phytoplankton biomass ratios were among the lowest reported in the literature for the nutrient range studied. Furthermore, the Chla:TP ratio was higher than what is typically observed in temperate lakes. We conclude that top-down control of zooplankton is of key importance in reservoirs in South China where frequent stocking of filter-feeding fish seems to contribute to poor water quality in the form of higher algal biomass and reduced clarity.  相似文献   

4.
The impact of fish-mediated changes on the structure and grazingof zooplankton on phytoplankton and bacterioplankton was studiedin Lake Søbygaard during the period 1984–92 bymeans of in vitro grazing experiments (14C-labelled phytoplankton,3H-labelled bacterioplankton) and model predictions. Measuredzooplankton clearance rates ranged from 0–25 ml l–1h–1 on phytoplankton to 0–33 ml l–1 h–1on bacterioplankton.The highest rates were found during thesummer when Daphnia spp. were dominant. As the phytoplanktonbiomass was substantially greater than that of bacterioplanktonthroughout the study period, ingestion of phytoplankton was26-fold greater than that of bacterioplankton. Multiple regressionanalysis of the experimental data revealed that Daphnia spp.,Bosmina longirostris and Cyclops vicinus, which were the dominantzooplankton, all contributed significantly to the variationin ingestion of phytoplankton, while only Daphnia spp. contributedsignificantly to that of bacterioplankton. Using estimated meanvalues for clearance and ingestion rates for different zooplankters,we calculated zooplankton grazing on phytoplankton and bacterioplanktonon the basis of monitoring data of lake plankton obtained duringa 9 year study period. Summer mean grazing ranged from 2 to4% of phytoplankton production and 2% of bacterioplankton productionto maxima of 53 and 88%, respectively. The grazing percentagedecreased with increasing density of planktivorous fish caughtin August each year using gill nets and shore-line electrofishing.The changes along a gradient of planktivorous fish abundanceseemed highest for bacterioplankton. Accordingly, the percentagecontribution of bacterioplankton to the total ingestion of thetwo carbon sources decreased from a summer mean value of 8%in Daphnia-dominated communities at lower fish density to 0.7–1.1%at high fish density, when cyclopoid copepods or Bosmina androtifers dominated. Likewise, the percentage of phytoplanktonproduction channelled through the bacteria varied, it beinghighest (5–8%) at high fish densities. It is argued thatthe negative impact of zooplankton grazing on bacterioplanktonin shallow lakes is highest at intermediate phosphorus levels,under which conditions Daphnia dominate the zooplankton community.  相似文献   

5.
Phytoplankton and zooplankton development in a lowland, temperate river   总被引:5,自引:0,他引:5  
The longitudinal and seasonal patterns of plankton developmentwere examined over 2 years in a lowland, temperate river: theRideau River (Ontario, Canada). Following an initial decreasein phytoplankton and zooplankton biomass as water flowed fromthe headwaters into the Rideau River proper, there was an increasein chlorophyll a (chl a) and zooplankton biomass with downstreamtravel. At approximately river km 60, both phytoplankton andzooplankton reached their maximum biomass of 27 µg l–1(chl a) and 470 µg l–1 (dry mass), respectively.Downstream of river km 60, the biomass of both planktonic communitiesdeclined significantly despite increasing nutrient concentrationsand favorable light conditions. These downstream declines maybe due to the feeding activity of the exotic zebra mussel (Dreissenapolymorpha) which was at high density in downstream reaches(>1000 individuals m–2). There was no evidence forlongitudinal phasing of phytoplankton and zooplankton, as increasesand decreases in chl a and zooplankton biomass appeared to coincide.Overall, chl a was best predicted by total phosphorus (R2=0.43),whereas zooplankton biomass was best predicted by chl a (R2=0.20).There was no evidence for significant grazing effects of zooplanktonon phytoplankton biomass.  相似文献   

6.
Using empirical data from 466 temperate to arctic lakes covering a total phosphorus (TP) gradient of 2-1036 mg L-1, we describe how the relative contributions of resource supply, and predator control change along a nutrient gradient. We argue that (a) predator control on large-bodied zooplankton is unimodally related to TP and is highest in the most nutrient-rich and nutrient-poor lakes and generally higher in shallow than deep lakes, (b) the cascading effect of changes in predator control on phytoplankton decreases with increasing TP, and (c) these general patterns occur with significant variations--that is, the predation pressure can be low or high at all nutrient levels. A quantile regression revealed that the median share of the predator-sensitive Daphnia to the total cladoceran biomass was significantly related unimodally to TP, while the 10% and 90% percentiles approached 0 and 100%, respectively, at all TP levels. Moreover, deep lakes (more than 6 m) had a higher percentage of Daphnia than shallow (less than 6 m) lakes. The median percentage of Daphnia peaked at 0.15 mg L-1 in shallow lakes and 0.09 mg L-1 in deep lakes. The assumption that fish are responsible for the unimodality was supported by data on the abundance of potential planktivorous fish (catch net-1 night-1 gill nets with the different mesh sizes [CPUE]). To elucidate the potential cascading effect on phytoplankton, we examined the zooplankton phytoplankton biomass ratio. Even though this ratio was inversely related to CPUE at all TP levels, we found an overall higher ratio in oligotrophic lakes that declined toward low values (typically below 0.2) in hypertrophic lakes. These results suggest that planktivorous fish have a more limited effect on the grazing control of phytoplankton in oligotrophic lakes than in eutrophic lakes, despite similar predator control of large-bodied zooplankton. Accordingly, the phytoplankton yield, expressed as the chlorophyll a-TP ratio, did not relate to CPUE at low TP, but it increased significantly with CPUE at high TP. We conclude that the chances of implementing a successful restoration program using biomanipulation as a tool to reduce phytoplankton biomass increase progressively with increasing TP, but that success in the long term is most likely achieved at intermediate TP concentrations.  相似文献   

7.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   

8.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

9.
Seasonal abundance as total biomass and specific densities ofthe main herbivorous zooplankton (>60 µm) in hypertrophicHartbeespoort Dam from 1981 to 1983 are described. After springzooplankton biomass maxima each year there followed a mid-summerdecline in the Daphnia population and a shift to a smaller bodiedcladoceran community dominated by Ceriodaphnia concomitant witha change from largely edible phytoplankton species to abundantcolonial Microcystis. In situ community grazing rates were measuredthroughout 1983 using a 14C-labelled unicellular alga. Integratedcommunity grazing rates measured in the aerobic water columnwere highest in December (260.2%/day) when Daphnia was abundantand the edible component of the phytoplankton was diminishing.Lowest integrated community grazing rates occurred in January–February(19.8–35.3%/day) and July (28.3%/day) when the phytoplanktonwas composed almost entirely of Microcysris, and Ceriodaphniadominated the zooplankton community whilst food availabilitywas low. Feeding in Ceriodaphnia was not hindered by abundantlarge Microcysris colonies; total biomass specific grazing ratewas high when Ceriodaphnia dominated and low when Daphnia dominatedthe zoo-plankton community. Results indicate that in hypertrophicconditions it is unlikely that large filter-feeders such asDaphnia are able to retard or limit the development of Cyanophyceaeblooms by high grazing pressure.  相似文献   

10.
Can phaeopigments be used as markers for Daphnia grazing in Lake Constance?   总被引:1,自引:0,他引:1  
The formation of chlorophyll a degradation products was measuredwith natural phytoplankton from Lake Constance and Daphnia magnaand native Daphnia as grazers in grazing experiments duringspring bloom conditions using high-pressure liquid chromatography(HPLC). Chlorophyll a start concentrations were between 1.2and 16.3 µg l–1; phaeopigment weights constituted5% of chlorophyll a weight. Only phaeophorbide a was a markerfor Daphnia grazing; concentrations of other phaeopigments (phaeophytina, chlorophyllide a and two unidentified phaeopigments) didnot increase during Daphnia grazing. Conversion efficiencies(chlorophyll a to phaeophorbide a) were between 0 and 43% ona weight basis, and between 0 and 65% on a molar basis. Conversionefficiencies were highest at high grazer density (40 Daphnial–1) and after a 24 h exposure time. Grazing by microzooplanktonprobably led to the formation of the two unidentified phaeopigments.In Lake Constance, Daphnia density was significantly positivelycorrelated with the phaeophorbide a/chlorophyll a ratio whenit was <5000 Daphnia m–3. However, when higher Daphniadensities were included in calculations, then Daphnia densitywas positively, but insignificantly, correlated with the phaeophorbidea/chlorophyll a ratio. This suggests that when the level offood per Daphnia is low, then grazing is more efficient withless production of phaeophorbide a and a higher production ofcolourless products.  相似文献   

11.
To determine the frequency with which zooplankton influence chlorophyll a (Chla) levels, we explored annually-averaged data from oligotrophic and mesotrophic lakes that differed in morphometry, total phosphorus (TP) concentrations, and zooplankton community composition due to pH. The data were divided into two sets according to the type of filter used to collect chlorophyll. Residuals of the Chla: TP regressions were not related to lake morphometry, TN content, water clarity or pH. In the first data set there were no consistent relationships between residuals in Chla and twelve grazer biomass variables for 37 of the 38 lakes. The single exception had a very large population of Daphnia dubiaand low concentrations of Chla for its TP. In the second data set, 3 of 25 lakes had exceptionally low Chla concentrations for their TP. These lakes were acidic (pH < 6) and had very large biomasses of Holopedium gibberumcorrelated with negative Chla residuals, indicating significant grazing. At pH > 6, Daphnia spp. strongly influenced the significant correlations. We conclude that zooplankton contribute to the prediction of Chla beyond that possible by TP alone in acidic and non-acidic Canadian Shield Lakes, but evidence for strong suppression of chlorophyll by grazers was relatively rare (4 of 63 cases) on annual time steps.  相似文献   

12.
1. Winter temperatures differ markedly on the Canadian prairies compared with Denmark. Between 1 January 1998 and 31 December 2002, average weekly and monthly temperatures did not drop below 0 °C in the vicinity of Silkeborg, Denmark. Over this same time, weekly average temperatures near Calgary, Alberta, Canada, often dropped below −10 °C for 3–5 weeks and the average monthly temperature was below 0 °C for 2–4 months. Accordingly, winter ice conditions in shallow lakes in Canada and Denmark differed considerably. 2. To assess the implications of winter climate for lake biotic structure and function we compared a number of variables that describe the chemistry and biology of shallow Canadian and Danish lakes that had been chosen to have similar morphometries. 3. The Danish lakes had a fourfold higher ratio of chlorophyll‐a: total phosphorus (TP). Zooplankton : phytoplankton carbon was related to TP and fish abundance in Danish lakes but not in Canadian lakes. There was no significant difference in the ratio log total zooplankton biomass : log TP and the Canadian lakes had a significantly higher proportion of cladocerans that were Daphnia. These differences correspond well with the fact that the Danish lakes have more abundant and diverse fish communities than the Canadian lakes. 4. Our results suggest that severe Canadian winters lead to anoxia under ice and more depauperate fish communities, and stronger zooplankton control on phytoplankton in shallow prairie lakes compared with shallow Danish lakes. If climate change leads to warmer winters and a shorter duration of ice cover, we predict that shallow Canadian prairie lakes will experience increased survivorship of planktivores and stronger control of zooplankton. This, in turn, might decrease zooplankton control on phytoplankton, leading to ‘greener’ lakes on the Canadian prairies.  相似文献   

13.
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N‐ or P‐limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large‐scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl‐a)] were carried out in 45 mid‐lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl‐a. In separate nutrient–chl‐a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl‐a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl‐a : TP was not influenced by TN : TP, while chl‐a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a ‘cut‐off’ TN : TP ratio to identify a limiting nutrient for a multi‐species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) >100 kg ha?1 had significantly higher chl‐a and lower Secchi depth than those with yields <100 kg ha?1. TP–chl‐a and TP–Secchi depth relationships are not significantly different between lakes with yields >100 kg ha?1 or <100 kg ha?1. These results indicate that the fish failed to decrease chl‐a yield or enhance ZSD. Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.  相似文献   

14.
The importance of top-down effects of piscivorous fish on phytoplankton in natural oligotrophic lakes is still debated. In this study, we analyzed patterns in phytoplankton and zooplankton abundance in 37 oligotrophic Canadian Shield lakes in relation to variations in both piscivorous fish predation and resources (total phosphorus; TP). Zooplankton community structure (but not total biomass) was partially affected by the variation in fish predation while the phytoplankton community structure and total biomass showed no response. Carbon isotope analyses revealed that the lack of top-down effects is due to the uncoupling of the littoral and the pelagic food webs. We found that the fish community depends mostly on benthic resources, suggesting that only low planktivory occurred in our study lakes. Due to the absence of specialized zooplanktivorous fish, zooplankton is poorly exploited in these lakes and thus able to control phytoplankton by grazing. A comparison of our data with published studies on the TP–chlorophyll a relationships in both natural and manipulated systems shows that the phytoplankton biomass per unit of TP is relatively low in Canadian Shield lakes.  相似文献   

15.
Empirical models based on zooplankton biomass were used to predict mean summer chlorophyll a (Chl a) and to examine how zooplankton influenced the total phosphorus (TP) - Chl a relationship. Four years of data were analyzed for three lakes having similar TP concentrations but varied abundances of Daphnia and Ceriodaphnia. Mean TP did not correlate significantly with mean Chl a during the study period, although mean Daphnia density was a good predictor of Chl a concentration (p > 0.001). Both residuals from the TP - Chl a relationship (p > 0.001) and Secchi depth (p > 0.007) were negatively correlated with Daphnia abundance. Ceriodaphnia abundance was positively correlated with Chl a (p > 0.002) and Secchi depth (p > 0.001). Mean size of Daphnia during spring was the best predictor of the Daphnia-Ceriodaphnia shift in mid-summer. Early establishment of a large-sized Daphnia cohort may prevent their summer elimination by Chaoborus and intensify competition with Ceriodaphnia. These results imply an important link between Daphnia and Ceriodaphnia thereby limiting the utility of Chl a - TP model predictions in these small, urban lakes. This linkage and the differential effect of these two zooplankton species on planktonic algae deserve further consideration in similar lakes where phytoplankton and zooplankton tend to be tightly coupled.  相似文献   

16.
1. The effect of total nitrogen (TN) and phosphorus (TP) loading on trophic structure and water clarity was studied during summer in 24 field enclosures fixed in, and kept open to, the sediment in a shallow lake. The experiment involved a control treatment and five treatments to which nutrients were added: (i) high phosphorus, (ii) moderate nitrogen, (iii) high nitrogen, (iv) high phosphorus and moderate nitrogen and (v) high phosphorus and high nitrogen. To reduce zooplankton grazers, 1+ fish (Perca fluviatilis L.) were stocked in all enclosures at a density of 3.7 individuals m?2. 2. With the addition of phosphorus, chlorophyll a and the total biovolume of phytoplankton rose significantly at moderate and high nitrogen. Cyanobacteria or chlorophytes dominated in all enclosures to which we added phosphorus as well as in the high nitrogen treatment, while cryptophytes dominated in the moderate nitrogen enclosures and the controls. 3. At the end of the experiment, the biomass of the submerged macrophytes Elodea canadensis and Potamogeton sp. was significantly lower in the dual treatments (TN, TP) than in single nutrient treatments and controls and the water clarity declined. The shift to a turbid state with low plant coverage occurred at TN >2 mg N L?1 and TP >0.13–0.2 mg P L?1. These results concur with a survey of Danish shallow lakes, showing that high macrophyte coverage occurred only when summer mean TN was below 2 mg N L?1, irrespective of the concentration of TP, which ranged between 0.03 and 1.2 mg P L?1. 4. Zooplankton biomass and the zooplankton : phytoplankton biomass ratio, and probably also the grazing pressure on phytoplankton, remained overall low in all treatments, reflecting the high fish abundance chosen for the experiment. We saw no response to nutrition addition in total zooplankton biomass, indicating that the loss of plants and a shift to the turbid state did not result from changes in zooplankton grazing. Shading by phytoplankton and periphyton was probably the key factor. 5. Nitrogen may play a far more important role than previously appreciated in the loss of submerged macrophytes at increased nutrient loading and for the delay in the re‐establishment of the nutrient loading reduction. We cannot yet specify, however, a threshold value for N that would cause a shift to a turbid state as it may vary with fish density and climatic conditions. However, the focus should be widened to use control of both N and P in the restoration of eutrophic shallow lakes.  相似文献   

17.
Stocking piscivorous salmonids in Lake Michigan produced dramaticalterations in food-web structure, including higher numbersof large-bodied zooplankton (especially Daphnia pulicaria),lower summer chlorophyll concentrations and increased watertransparency. Experimental determinations of epilimnetic phytoplanktongrowth rates and of zooplankton grazing rates indicate thatherbivorous zooplankton controlled algal dynamics during thesummer of 1983 because grazers occupied the surface waters throughoutthe day. In 1985, however, both large- and small-bodied Daphniamade approximately equal contributions to total grazer biomass,and all grazers displayed pronounced diel vertical migrations,visiting epilimnetic waters only at night. This prohibited zooplanktonfrom controlling algal dynamics because grazing losses did notexceed phytoplankton growth rates. The changes in zooplanktoncommunity composition and behavior observed in summer 1985 probablyresulted from increased predation by visually orienting planktivorousfish, especially bloater chub (Coregonus hoyi). Effects of food-webmanipulations on phytoplankton dynamics were evident only duringJuly and August. During spring and early summer copepods dominateLake Michigan's zooplankton community. Owing to their smallbody size, copepods are less susceptible to fish predation andexhibit much lower filtering rates than Daphnia. Variabilityin zooplanktivorous fish abundance probably has little effecton phytoplankton dynamics during spring and early summer.  相似文献   

18.
This study compares and contrasts the dynamics of phytoplankton, zooplankton, and nutrients in two of the largest shallow lakes in the USA (Lake Apopka, Florida) and Europe (Lago Trasimeno, Umbria, Italy) and considers particularly the biomass ratio of zooplankton to phytoplankton (BZ:BP) in relation to nutrient levels and in the context of data from other subtropical and temperate lakes. Lake Apopka is hypereutrophic with higher concentrations of total phosphorus (TP), nitrogen (TN), and nearly an order of magnitude higher BP than Lago Trasimeno. However, combined data from the two lakes can be fit to a single log–log regression model that explains 72% of the variability in BP based on TP. In contrast, BZ has a significant positive log–log relationship with TP only for Lago Trasimeno, and is much lower than expected based on the TP concentrations observed in Lake Apopka. Lake Apopka has a fish assemblage that includes high densities of gizzard shad (Dorosoma cepedianum) and threadfin shad (D. petenense), similar to other eutrophic Florida lakes that also have extreme low BZ. The ratio BZ:BP is below 0.01 in Lake Apopka, 10-fold lower than in Trasimeno and among the lowest values reported in the literature. Although stress of high water temperature and a greater proportion of inedible cyanobacteria may be contributing factors, the collective results support an emerging view that fish predation limits the biomass of crustacean zooplankton in subtropical lakes. Handling editor: S. I. Dodson  相似文献   

19.
Recently, it has been shown that ratios of chlorophyll a toparticulate phosphorus (Chl a/PP) and chlorophyll a to particulatenitrogen (Chl a/PN) were significantly higher in eutrophic thanoligo/mesotrophic waters in 17 lakes on the central volcanicplateau, North Island, New Zealand. This difference was thoughtto be due to an increase in the chlorophyll a content of phytoplanktonin these eutrophic lakes. Corresponding measurements of chlorophylla and phytoplankton cell volume made during this study do notsupport this hypothesis. However, ratios of chlorophyll a toadenosine triphosphate and estimates of percentage phytoplanktonbiomass were significantly higher (P<0.05) in our eutrophicthan oligo/mesotrophic samples, suggesting that Chl a/PP andChl a/PN may be high in eutrophic waters simply because phytoplanktoncomprise more of the total microbial biomass. This hypothesisis supported by a strong linear relationship (r=0.88, P<0.001)between Chl a/PP and percentage phytoplankton biomass in sixof our study lakes where corresponding measurements were made.  相似文献   

20.
To elucidate the possibilities of using zooplankton remains in the surface sediment to describe present-days community structure and population dynamics of zooplankton, fish abundance and temperature, we compared contemporary data sampled in the pelagial during summer with the sediment record from the upper 1 cm of the sediment in 135 lakes covering a latitude gradient from Greenland in the north to New Zealand in the south. The abundance of three genera Bosmina, Daphnia and Ceriodaphnia of the total pool of ephippia was significantly related to the total abundance of the same taxa in the pelagic zone. However, in most lakes the abundance of Ceriodaphnia was higher in the sediment than in the water, which may be attributed to the overall preference by this genus for the littoral habitat. Using contemporary data from 27 Danish lakes sampled fortnightly during summer for 10 years, we found substantial inter-annual variations in the abundance of Daphnia spp., Ceriodaphnia spp., B. longirostris and B. coregoni. Yet, the sediment record mimicked the medium level well for most of the lakes, which suggests that the sediment record provides an integrated picture of the pelagic cladoceran community, which otherwise can be obtained only by long-term frequent contemporary sampling for several years. The contribution of Daphnia to the sum of Daphnia and Bosmina ephippia was negatively correlated with the abundance of fish expressed as catch per night in multi-mesh sized gill nets (CPUE). Yet, region-specific differences occurred, which partly could be eliminated by including nutrient state expressed as total phosphorus (TP) in a multiple regression. The average ratio of ephippia to the sum of ephippia and carapaces of Bosmina varied 40-fold between the sampling regions and was significantly negatively related to summer mean air temperature, and for Danish lakes also, albeit weakly, to fish CPUE but not to chlorophyll a. Apparently, temperature is the most important factor determining the ratio of parthenogenetic to ephippia producing specimens of Bosmina. We conclude that the sediment record of cladocerans is a useful indicator of community structure of pelagic cladocerans and the abundance of fish and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号