首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of inhaled nitric oxide (iNO) is a potential therapeutic strategy to prevent bronchopulmonary dysplasia (BPD) in premature newborns with respiratory distress syndrome. We evaluated this approach in a rat model, in which premature pups were exposed to room air, hyperoxia, or a combination of hyperoxia and NO (8.5 and 17 ppm). We investigated the anti-inflammatory effects of prolonged iNO therapy by studying survival, histopathology, fibrin deposition, and differential mRNA expression (real-time RT-PCR) of key genes involved in the development of BPD. iNO therapy prolonged median survival 1.5 days (P = 0.0003), reduced fibrin deposition in a dosage-dependent way up to 4.3-fold (P < 0.001), improved alveolar development by reducing septal thickness, and reduced the influx of leukocytes. Analysis of mRNA expression revealed an iNO-induced downregulation of genes involved in inflammation (IL-6, cytokine-induced neutrophilic chemoattractant-1, and amphiregulin), coagulation, fibrinolysis (plasminogen activator inhibitor 1 and urokinase-type plasminogen activator receptor), cell cycle regulation (p21), and an upregulation of fibroblast growth factor receptor-4 (alveolar formation). We conclude that iNO therapy improves lung pathology and prolongs survival by reducing septum thickness, inhibiting inflammation, and reducing alveolar fibrin deposition in premature rat pups with neonatal hyperoxic lung injury.  相似文献   

2.

Background

Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD), a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome.

Methods

Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously) and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue.

Results

Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day) significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH).

Conclusion

Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary inflammatory response, fibrin deposition and RVH, and stimulates alveolarization. Initiation of sildenafil treatment after hyperoxic lung injury and continued during room air recovery improves alveolarization and restores pulmonary angiogenesis and RVH in experimental BPD.  相似文献   

3.
Phosphodiesterase (PDE) 4 inhibitors are potent anti-inflammatory drugs with antihypertensive properties, and their therapeutic role in bronchopulmonary dysplasia (BPD) is still controversial. We studied the role of PDE4 inhibition with piclamilast on normal lung development and its therapeutic value on pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) in neonatal rats with hyperoxia-induced lung injury, a valuable model for premature infants with severe BPD. The cardiopulmonary effects of piclamilast treatment (5 mg·kg(-1)·day(-1)) were investigated in two models of experimental BPD: 1) daily treatment during continuous exposure to hyperoxia for 10 days; and 2) late treatment and injury-recovery in which pups were exposed to hyperoxia or room air for 9 days, followed by 9 or 42 days of recovery in room air combined with treatment started on day 6 of oxygen exposure until day 18. Prophylactic piclamilast treatment reduced pulmonary fibrin deposition, septum thickness, arteriolar wall thickness, arteriolar vascular smooth muscle cell proliferation and RVH, and prolonged survival. In the late treatment and injury-recovery model, hyperoxia caused persistent aberrant alveolar and vascular development, PH, and RVH. Treatment with piclamilast in both models reduced arteriolar wall thickness, attenuated RVH, and improved right ventricular function in the injury recovery model, but did not restore alveolarization or angiogenesis. Treatment with piclamilast did not show adverse cardiopulmonary effects in room air controls in both models. In conclusion, PDE4 inhibition attenuated and partially reversed PH and RVH, but did not advance alveolar development in neonatal rats with hyperoxic lung injury or affect normal lung and heart development.  相似文献   

4.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Over the years, the BPD phenotype has evolved, but despite various advances in neonatal management approaches, the reduction in the BPD burden is minimal. With the advent of surfactant, glucocorticoids, and new ventilation strategies, BPD has evolved from a disease of structural injury into a new BPD, marked by an arrest in alveolar growth in the lungs of extremely premature infants. This deficient alveolar growth has been associated with a diminution of pulmonary vasculature. Several investigators have described the epithelial / vascular co‐dependency and the significant role of crosstalk between vessel formation, alveologenesis, and lung dysplasia's; hence identification and study of factors that regulate pulmonary vascular emergence and inflammation has become crucial in devising effective therapeutic approaches for this debilitating condition. The potent antiangiogenic and proinflammatory protein Endothelial Monocyte Activating Polypeptide II (EMAP II) has been described as a mediator of pulmonary vascular and alveolar formation and its expression is inversely related to the periods of vascularization and alveolarization in the developing lung. Hence the study of EMAP II could play a vital role in studying and devising appropriate therapeutics for diseases of aberrant lung development, such as BPD. Herein, we review the vascular contribution to lung development and the implications that vascular mediators such as EMAP II have in distal lung formation during the vulnerable stage of alveolar genesis. Birth Defects Research (Part A) 100:180–188, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
In bronchopulmonary dysplasia (BPD), alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF)-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis in hyperoxia-exposed neonatal mice, an animal model for this disease. We also examined periostin expression in neonatal lung mesenchymal stromal cells and lung tissue of hyperoxia-exposed neonatal mice and human infants with BPD. Two-to-three day-old wild-type and periostin null mice were exposed to air or 75% oxygen for 14 days. Mesenchymal stromal cells were isolated from tracheal aspirates of premature infants. Hyperoxic exposure of neonatal mice increased alveolar wall periostin expression, particularly in areas of interstitial thickening. Periostin co-localized with α-smooth muscle actin, suggesting synthesis by myofibroblasts. A similar pattern was found in lung sections of infants dying of BPD. Unlike wild-type mice, hyperoxia-exposed periostin null mice did not show larger air spaces or α-smooth muscle-positive myofibroblasts. Compared to hyperoxia-exposed wild-type mice, hyperoxia-exposed periostin null mice also showed reduced lung mRNA expression of α-smooth muscle actin, elastin, CXCL1, CXCL2 and CCL4. TGF-β treatment increased mesenchymal stromal cell periostin expression, and periostin treatment increased TGF-β-mediated DNA synthesis and myofibroblast differentiation. We conclude that periostin expression is increased in the lungs of hyperoxia-exposed neonatal mice and infants with BPD, and is required for hyperoxia-induced hypoalveolarization and interstitial fibrosis.  相似文献   

6.
Transforming growth factor-alpha (TGF-alpha) and its receptor, the epithelial growth factor receptor (EGFR), have been associated with lung remodeling in premature infants with bronchopulmonary dysplasia (BPD). The goal of this study was to target TGF-alpha overexpression to the saccular phase of lung morphogenesis and determine early alterations in gene expression. Conditional lung-specific TGF-alpha bitransgenic mice and single-transgene control mice were generated. TGF-alpha overexpression was induced by doxycycline (Dox) treatment from embryonic day 16.5 (E16.5) to E18.5. After birth, all bitransgenic pups died by postnatal day 7 (P7). Lung histology at E18.5 and P1 showed abnormal lung morphogenesis in bitransgenic mice, characterized by mesenchymal thickening, vascular remodeling, and poor apposition of capillaries to distal air spaces. Surfactant levels (saturated phosphatidylcholine) were not reduced in bitransgenic mice. Microarray analysis was performed after 1 or 2 days of Dox treatment during the saccular (E17.5, E18.5) and alveolar phases (P4, P5) to identify genes induced by EGFR signaling that were shared or unique to each phase. We found 196 genes to be altered (>1.5-fold change; P < 0.01 for at least 2 time points), with only 32% similarly altered in both saccular and alveolar phases. Western blot analysis and immunostaining showed that five genes selected from the microarrays (egr-1, SP-B, SP-D, S100A4, and pleiotrophin) were also increased at the protein level. Pathological changes in TGF-alpha-overexpressing mice bore similarities to premature infants born in the saccular phase who develop BPD, including remodeling of the distal lung septae and arteries.  相似文献   

7.
Epidemiological studies have shown that maternal preeclampsia (PE) increases the risk of bronchopulmonary dysplasia (BPD), but the underlying mechanism is unknown. Soluble vascular endothelial growth factor receptor-1 (soluble VEGFR1, known as soluble fms-like tyrosine kinase 1, or sFlt-1), an endogenous antagonist of vascular endothelial growth factor (VEGF), is markedly elevated in amniotic fluid and maternal blood in PE. Therefore, we hypothesized that antenatal exposure to excess sFlt-1 disrupts lung development through impaired VEGF signaling in utero, providing a mechanistic link between PE and BPD. To determine whether increased sFlt-1 in amniotic fluid is sufficient to cause sustained abnormalities of lung structure during infancy, sFlt-1 or saline was injected into amniotic sacs of pregnant Sprague-Dawley rats at 20 days of gestation (term, 22 days). After birth, pups were observed through 14 days of age for study. We found that intra-amniotic sFlt-1 treatment decreased alveolar number, reduced pulmonary vessel density, and caused right and left ventricular hypertrophy in 14-day-old rats. In addition, intra-amniotic sFlt-1 treatment suppressed activation of lung VEGF receptor-2 and increased apoptosis in endothelial and mesenchymal cells in the newborn lung. We conclude that exposure to excess sFlt-1 in amniotic fluid during late gestation causes sustained reductions in alveolarization and pulmonary vascular growth during infancy, accompanied by biventricular hypertrophy suggesting pulmonary and systemic hypertension. We speculate that impaired VEGF signaling in utero due to exposure of high amniotic fluid levels of sFlt-1 in PE disrupts lung growth and contributes to the increased risk of BPD in infants born to mothers with PE.  相似文献   

8.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease in infants born extremely preterm, typically before 28 weeks' gestation, characterized by a prolonged need for supplemental oxygen or positive pressure ventilation beyond 36 weeks postmenstrual age. The limited number of autopsy samples available from infants with BPD in the postsurfactant era has revealed a reduced capacity for gas exchange resulting from simplification of the distal lung structure with fewer, larger alveoli because of a failure of normal lung alveolar septation and pulmonary microvascular development. The mechanisms responsible for alveolar simplification in BPD have not been fully elucidated, but mounting evidence suggests that aberrations in the cross-talk between growth factors of the lung mesenchyme and distal airspace epithelium have a key role. Animal models that recapitulate the human condition have expanded our knowledge of the pathology of BPD and have identified candidate matrix components and growth factors in the developing lung that are disrupted by conditions that predispose infants to BPD and interfere with normal vascular and alveolar morphogenesis. This review focuses on the deviations from normal lung development that define the pathophysiology of BPD and summarizes the various candidate mesenchyme-associated proteins and growth factors that have been identified as being disrupted in animal models of BPD. Finally, future areas of research to identify novel targets affected in arrested lung development and recovery are discussed.  相似文献   

9.
Hyperoxia disrupts vascular and alveolar growth of the developing lung and contributes to the development of bronchopulmonary dysplasia (BPD). Endothelial progenitor cells (EPC) have been implicated in repair of the vasculature, but their role in lung vascular development is unknown. Since disruption of vascular growth impairs lung structure, we hypothesized that neonatal hyperoxia impairs EPC mobilization and homing to the lung, contributing to abnormalities in lung structure. Neonatal mice (1-day-old) were exposed to 80% O(2) at Denver's altitude (= 65% at sea level) or room air for 10 days. Adult mice were also exposed for comparison. Blood, lung, and bone marrow were harvested after hyperoxia. Hyperoxia decreased pulmonary vascular density by 72% in neonatal but not adult mice. In contrast to the adult, hyperoxia simplified distal lung structure neonatal mice. Moderate hyperoxia reduced EPCs (CD45-/Sca-1+/CD133+/VEGFR-2+) in the blood (55%; P < 0.03), bone marrow (48%; P < 0.01), and lungs (66%; P < 0.01) of neonatal mice. EPCs increased in bone marrow (2.5-fold; P < 0.01) and lungs (2-fold; P < 0.03) of hyperoxia-exposed adult mice. VEGF, nitric oxide (NO), and erythropoietin (Epo) contribute to mobilization and homing of EPCs. Lung VEGF, VEGF receptor-2, endothelial NO synthase, and Epo receptor expression were reduced by hyperoxia in neonatal but not adult mice. We conclude that moderate hyperoxia decreases vessel density, impairs lung structure, and reduces EPCs in the circulation, bone marrow, and lung of neonatal mice but increases EPCs in adults. This developmental difference may contribute to the increased susceptibility of the developing lung to hyperoxia and may contribute to impaired lung vascular and alveolar growth in BPD.  相似文献   

10.
Chorioamnionitis is associated with preterm delivery and bronchopulmonary dysplasia (BPD), characterized by impaired alveolar and pulmonary vascular development and vascular dysfunction. To study the vascular effects in a model of chorioamnionitis, preterm lambs were exposed to 20 mg of intra-amniotic endotoxin or saline for 1, 2, 4, or 7 days and delivered at 122 days gestational age (term = 150 days). This intra-amniotic endotoxin dose was previously shown to induce lung maturation. The effect of intra-amniotic endotoxin on expression of endothelial proteins was evaluated. Muscularization of the media and collagen deposition in adventitia of small pulmonary arteries was used to assess vascular remodeling. Compared with controls, bronchoalveolar lavage fluid protein content was increased 2 days after intra-amniotic endotoxin exposure. Vascular endothelial growth factor (VEGF) 165 isoform mRNA decreased 2-4 days after intra-amniotic endotoxin. VEGF, VEGF receptor-2, endothelial nitric oxide synthase (eNOS), platelet endothelial cell adhesion molecule-1, and Tie-2 protein expression in the lung coordinately decreased 1-7 days after intra-amniotic endotoxin. Intra-amniotic endotoxin appeared to selectively decrease eNOS expression in small pulmonary vessels compared with large vessels. Medial smooth muscle hypertrophy and increased adventitial fibrosis were observed 4 and 7 days after intra-amniotic endotoxin. These results demonstrate that, in the preterm lamb lung, antenatal inflammation inhibits endothelial cell protein expression followed by vascular remodeling changes in small pulmonary arteries. Exposure to antenatal inflammation may cause vascular remodeling and contribute to the development of BPD.  相似文献   

11.

Backgound

Alveolarization requires coordinated extracellular matrix remodeling, a process in which matrix metalloproteinases (MMPs) play an important role. We postulated that polymorphisms in MMP genes might affect MMP function in preterm lungs and thus influence the risk of bronchopulmonary dysplasia (BPD).

Methods and Findings

Two hundred and eighty-four consecutive neonates with a gestational age of <28 weeks were included in this prospective study. Forty-five neonates developed BPD. Nine single-nucleotide polymorphisms (SNPs) were sought in the MMP2, MMP14 and MMP16 genes. After adjustment for birth weight and ethnic origin, the TT genotype of MMP16 C/T (rs2664352) and the GG genotype of MMP16 A/G (rs2664349) were found to protect from BPD. These genotypes were also associated with a smaller active fraction of MMP2 and with a 3-fold-lower MMP16 protein level in tracheal aspirates collected within 3 days after birth. Further evaluation of MMP16 expression during the course of normal human and rat lung development showed relatively low expression during the canalicular and saccular stages and a clear increase in both mRNA and protein levels during the alveolar stage. In two newborn rat models of arrested alveolarization the lung MMP16 mRNA level was less than 50% of normal.

Conclusions

MMP16 may be involved in the development of lung alveoli. MMP16 polymorphisms appear to influence not only the pulmonary expression and function of MMP16 but also the risk of BPD in premature infants.  相似文献   

12.
Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.  相似文献   

13.
Chorioamnionitis is frequently associated with preterm birth and increases the risk of adverse outcomes such as bronchopulmonary dysplasia (BPD). Transforming growth factor (TGF)-beta1 is a key regulator of lung development, airway remodeling, lung fibrosis, and regulation of inflammation, and all these processes contribute to the development of BPD. Connective tissue growth factor (CTGF) is a downstream mediator of some of the profibrotic effects of TGF-beta1, vascular remodeling, and angiogenesis. TGF-beta1-induced CTGF expression can be blocked by TNF-alpha. We asked whether chorioamnionitis-associated antenatal inflammation would regulate TGF-beta1, the TGF-beta1 signaling pathway, and CTGF in preterm lamb lungs. Fetal sheep were exposed to 4 mg of intra-amniotic endotoxin or saline for 5 h, 24 h, 72 h, or 7 days before preterm delivery at 125 days gestation (full term = 150 days). Intra-amniotic endotoxin increased lung TGF-beta1 mRNA and protein expression. Elevated TGF-beta1 levels were associated with TGF-beta1-induced phosphorylation of Smad2. CTGF was selectively expressed in lung endothelial cells in control lungs, and intra-amniotic endotoxin caused CTGF expression to decrease to 30% of control values and TNF-alpha protein to increase. The antenatal inflammation-induced TGF-beta1 expression and Smad signaling in the fetal lamb lung may contribute to impaired lung alveolarization and reduced lung inflammation. Decreased CTGF expression may inhibit vascular development or remodeling and limit lung fibrosis during remodeling. These effects may contribute to the impaired alveolar and pulmonary vascular development that is the hallmark of the new form of BPD.  相似文献   

14.
The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long-term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound.  相似文献   

15.
16.
Hyperoxia is one of the major contributors to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants. Emerging evidence suggests that the arrested lung development of BPD is associated with pulmonary endothelial cell death and vascular dysfunction resulting from hyperoxia-induced lung injury. A better understanding of the mechanism of hyperoxia-induced endothelial cell death will provide critical information for the pathogenesis and therapeutic development of BPD. Epidermal growth factor-like domain 7 (EGFL7) is a protein secreted from endothelial cells. It plays an important role in vascular tubulogenesis. In the present study, we found that Egfl7 gene expression was significantly decreased in the neonatal rat lungs after hyperoxic exposure. The Egfl7 expression was returned to near normal level 2 wk after discounting oxygen exposure during recovery period. In cultured human endothelial cells, hyperoxia also significantly reduced Egfl7 expression. These observations suggest that diminished levels of Egfl7 expression might be associated with hyperoxia-induced endothelial cell death and lung injury. When we overexpressed human Egfl7 (hEgfl7) in EA.hy926 human endothelial cell line, we found that hEgfl7 overexpression could partially block cytochrome c release from mitochondria and decrease caspase-3 activation. Further Western blotting analyses showed that hEgfl7 overexpression could reduce expression of a proapoptotic protein, Bax, and increase expression of an antiapoptotic protein, Bcl-xL. Theses findings indicate that hEGFL7 may protect endothelial cell from hyperoxia-induced apoptosis by inhibition of mitochondria-dependent apoptosis pathway.  相似文献   

17.
18.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects the quality of life of infants. At present, premature exposure to hyperoxia for extended periods of time is believed to affect the development of lung tissue and vascularity, resulting in BPD. The oxidative stress caused by hyperoxia exposure is an important risk factor for BPD in premature infants. Nuclear factor E2‐related factor 2 (Nrf2) is an important regulator of antioxidant mechanisms. As a microRNA, microRNA‐125b (miR‐125b) plays an important role in cell proliferation, differentiation and apoptosis. Although the Nrf2/ARE pathway has been extensively studied, little is known about the regulatory role of microRNAs in Nrf2 expression. In this study, the expression levels of Nrf2 and miR‐125b in the lung tissues of premature Sprague Dawley (SD) rats and A549 cells exposed to hyperoxia were detected by quantitative real‐time polymerase chain reaction (qRT‐PCR), and the apoptosis of A549 cells was detected by flow cytometry. The results showed that Nrf2 and miRNA‐125b in the lung tissues of premature rats increased significantly upon exposure to hyperoxia and played a protective role. Nrf2 was suppressed by small interfering RNA (siRNA) in A549 cells, miR‐125b was similarly inhibited, and apoptosis was significantly increased. These results suggest that miR‐125b helps protect against BPD as a downstream target of Nrf2.  相似文献   

19.
Mechanical ventilation (MV) of very premature infants contributes to lung injury and bronchopulmonary dysplasia (BPD), the effects of which can be long-lasting. Little is currently known about the ability of the very immature lung to recover from ventilator-induced lung injury. Our objective was to determine the ability of the injured very immature lung to repair in the absence of continued ventilation and to identify potential mechanisms. At 125 days gestational age (days GA, 0.85 of term), fetal sheep were partially exposed by hysterotomy under anesthesia and aseptic conditions; they were intubated and ventilated for 2 h with an injurious MV protocol and then returned to the uterus to continue development. Necropsy was performed at either 1 day (short-term group, 126 days GA, n = 6) or 15 days (long-term group, 140 days GA, n = 5) after MV; controls were unventilated (n = 7-8). At 1 day after MV, lungs displayed signs of injury, including hemorrhage, disorganized elastin and collagen deposition in the distal airspaces, altered morphology, significantly reduced secondary septal crest density, and decreased airspace. Bronchioles had thickened epithelium with evidence of injury and sloughing. Relative mRNA levels of early response genes (connective tissue growth factor, cysteine-rich 61, and early growth response-1) and proinflammatory cytokines [interleukins (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, and transforming growth factor-β] were not different between groups 1 day after MV. At 15 days after MV, lung structure was normal with no evidence of injury. We conclude that 2 h of MV induces severe injury in the very immature lung and that these lungs have the capacity to repair spontaneously in the absence of further ventilation.  相似文献   

20.
Bronchopulmonary dysplasia (BPD) is a major cause of mortality and morbidity in premature infants, characterized by alveolar simplification, surfactant deficiency, and respiratory distress. In the present study, we have investigated the functional roles of sumoylated CCAAT/enhancer binding protein alpha (C/EBPα) in the BPD rat model. A significant increase in small ubiquitin‐like modifier 1 (SUMO1) and sumoylated C/EBPα protein levels were observed in BPD rats, and the levels of the sumoylated C/EBPα were associated with the pulmonary surfactant proteins (SPs). In order to confirm the role of sumoylated C/EBPα in BPD rats, SUMO1 was knocked down by lentiviral transfection of neonatal rat lungs with SUMO1‐RNAi‐LV. We found that the expression of C/EBPα and surfactant proteins increased following SUMO1 knockdown. Furthermore, the relatively low decrease in the levels of C/EBPα sumoylation was correlated with reduced glycogen consumption. Besides, co‐immunoprecipitation assays revealed that sumoylation is involved in the regulation of the interaction between C/EBPα and TGFβ2 in the lung. In conclusion, our findings indicate that sumoylation may act as a negative regulator of the C/EBPα‐mediated transactivation in BPD rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号