共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 研究姜黄素对高氧暴露致新生鼠支气管肺发育不良的影响,探讨其作用机制.方法 给予出生6 h内的SD大鼠持续60%氧暴露14d建立肺损伤模型.通氧的同时予姜黄索100 ms/(kg·d)灌胃.观察肺组织病理学改变,进行辐射状肺泡计数(RAC),末端脱氧核苷酸转移酶介导的dUTP缺口标记技术(TUNEL)检测肺组织细胞凋亡.免疫组化和Western blot法检测肺组织活化半胱氨酸蛋白酶-3(Caspase-3)的表达.结果 与空气对照组相比,随着氧暴露时间的延长,高氧组的大鼠出现肺发育停滞的典型病理表现:肺泡增大、结构简化,肺泡隔增厚.RAC明显减少,肺组织细胞凋亡明显增加,免疫组化和Western blot法均显示肺组织活化Caspase-3表达明显升高.姜黄素能改善损伤的肺病理结构,并在干预14d后使RAC显著增多,肺组织凋亡细胞显著减少,干预4d后肺组织活化Caspase-3显著降低.结论 姜黄素可减轻高氧暴露所致的BPD,可能是通过抗凋亡机制实现其保护作用. 相似文献
2.
Melatonin prevents oxidative stress and hepatocyte cell death induced by experimental cholestasis 总被引:2,自引:0,他引:2
Padillo FJ Cruz A Navarrete C Bujalance I Briceño J Gallardo JI Marchal T Caballero R Túnez I Muntané J Montilla P Pera-Madrazo C 《Free radical research》2004,38(7):697-704
The induction of oxidative stress precedes liver injury during experimental obstructive jaundice (OJ). In this sense, different evidences suggest that melatonin (MEL), as antioxidant, may be useful in the protection against apoptosis and necrosis during experimental cholestasis. In addition, we will also assess if MEL-dependent protection is related to a recovery of antioxidant status disturbances induced by OJ. Cholestasis was achieved by double ligature and sectioning of the principal bile duct. MEL was injected intraperitoneally (500 microg/kg/day). Lipid peroxidation was evaluated by the measurement of malondialdehyde (MDA) content in liver. Different parameters related to antioxidant status, such as reduced glutathione (GSH), glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD) were determined in liver. Liver injury was assessed by alanine amino-transferase (ALT) in serum, histological examination, DNA fragmentation and TUNEL assay. The activation of perisinusoidal stellate cells was evaluated by immunohistochemical measurement of alpha-smooth muscle actin in liver sections. The induction of OJ increased all the parameters related to apoptosis and necrosis in liver. The induction of liver injury was associated with stellate cell activation, as well as an increase in MDA (p < 0.0001) and a reduction in GSH, GPx, catalase and SOD content (p < 0.0001) in liver. MEL reduced hepatic apoptosis and necrosis (p < 0.004) with a significant improvement in all oxidative stress markers. In conclusion, our results showed that MEL recovered the antioxidant status and reduced apoptosis and necrosis induced by experimental cholestasis. 相似文献
3.
M Ahotupa V Bussacchini-Griot J C Béréziat A M Camus H Bartsch 《Biochemical and biophysical research communications》1987,146(3):1047-1054
We have investigated the generation of prooxidant state shortly after administration of N-nitrosamines (NA) to rats. N-Nitrosodimethylamine (NDMA) was found to increase ethane exhalation (EE) rapidly in a dose-related manner. EE remained elevated for several days after single doses of NDMA. Similarly, lipid peroxidation (LP) in the liver (measured by four methods) increased rapidly showing a peak 20 min after NDMA dose. The increase of LP was preceded by a decrease in retinol concentration in the liver. N-Nitrosodiethanolamine, too, increased EE and LP in the liver, whereas N-nitrosomethylbenzylamine had no effect. Thus, hepatocarcinogenic NA induced LP in their target tissue, and the LP enhancing effects of NA were not related to their acute toxic effects. 相似文献
4.
Utilizing a PCR-based subtractive cDNA approach, we demonstrated that the marine diatom Thalassiosira pseudonana exhibits a rapid response at the gene level to elevated concentrations of copper and that this response attenuates over 24 h of continuous exposure. A total of 16 copper-induced genes were identified, 11 of which were completely novel; however, many of the predicted amino acid sequences had characteristics suggestive of roles in ameliorating copper toxicity. Most of the novel genes were not equivalently induced by H2O2- or Cd-induced stress, indicating specificity in response. Two genes that could be assigned functions based on homology were also induced under conditions of general cellular stress. Half of the identified genes were located within two inverted repeats in the genome, and novel genes in one inverted repeat had mRNA levels induced by approximately 500- to 2,000-fold by exposure to copper for 1 h. Additionally, some of the inverted repeat genes demonstrated a dose-dependent response to Cu, but not Cd, and appear to belong to a multigene family. This multigene family may be the diatom functional homolog of metallothioneins. 相似文献
5.
Joung KE Kim HS Lee J Shim GH Choi CW Kim EK Kim BI Choi JH 《Free radical research》2011,45(9):1024-1032
Currently, bronchopulmonary dysplasia (BPD) occurs almost exclusively in pre-term infants. In addition to prematurity, other factors like oxygen toxicity and inflammation can contribute to the pathogenesis. This study aimed to compare urinary inflammatory and oxidative stress markers between the no/mild BPD group and moderate/severe BPD group and between BPD cases with significant early lung disease like respiratory distress syndrome (RDS) ('classic' BPD) and with minimal early lung disease ('atypical' BPD). A total of 60 patients who were a gestational age < 30 weeks or a birth weight < 1250 g were included. Urine samples were obtained on the 1(st), 3(rd) and 7(th) day of life and measured the levels of leukotriene E(4) (LTE(4)) and 8-hydroxydeoxyguanosine (8-OHdG). The 8-OHdG values on the 3(rd) day showed significant correlation to duration of mechanical ventilation. The 8-OHdG levels on the 7(th) day were the independent risk factor for developing moderate/severe BPD. In 'classic' BPD, the 8-OHdG values on the 3(rd) day were higher than those of 'atypical' BPD. In 'atypical' BPD, the LTE(4) values on the 7(th) day were higher than the values in 'classic' BPD. These results suggest that oxidative DNA damage could be the crucial mechanism in the pathogenesis of current BPD and the ongoing inflammatory process could be an important mechanism in 'atypical' BPD. 相似文献
6.
Justyna Nowakowska 《Acta Physiologiae Plantarum》1998,20(1):19-33
Wheat germin is a homopentameric 125 kD glycoprotein mainly localized in the cell wall of monocots, and is a specific marker
of the onset of growth in germinating seeds. The major objective of this study was to examine the expression and oxalate oxidase
activity of two wheat germin isoforms: gf-2.8 and gf-3.8 in transgenic tobacco plants. The transgenic tobacco plants were
created with different constructs: 1) one entire excision of gf-2.8 germin promoter and two partially deleted promoter sequences
were used to generate 3 independent GUS constructs; 2) the whole gf-2.8 gene construct and the fusion with CaMV 35S promoter;
3) one entire excision of gf-3.8 germin gene and one partially deleted gf-3.8 promoter sequences were used to generate 2 independent
GUS constructs; 4) the whole gf-3.8 gene and the fusion with CaMV 35S promoter. Hormonal treatment (auxin and gibberellin),
salt treatment, heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg, As) and Al induced high GUS activity in tobacco transformed
with entire and one partially deleted of the gf-2.8 gene. The immunoblotting confirmed induction of gf-2.8 gene and its product
expressed oxalate oxidase activity in tobacco transformed with the entire gf-2.8 construct. Neither nicotinic acid, salicylic
acid, heat shock, cold nor UV-C have enhanced significant GUS activity and germin gf-2.8 synhesis and activity.
The germin gf-3.8 constructs with GUS gene and with the entire gf-3.8 sequences gave non-positive response with factors mentioned
above. It has been demonstrated that gf-3.8 germin isoform is present as a monomer (Mr 25 kD). The non-active gf-3.8 protein is synthetised in transgenic tobacco plants only under control of the CaMV 35S promoter.
Consequently, among two germin isoforms, only the gf-2.8 protein seems to be regulated by hormonal, salt and heavy metal factors.
The gf-2.8 oxalate oxidase activity could be then involved in general stress-induced signalling in plant. 相似文献
7.
《Free radical research》2013,47(9):1024-1032
AbstractCurrently, bronchopulmonary dysplasia (BPD) occurs almost exclusively in pre-term infants. In addition to prematurity, other factors like oxygen toxicity and inflammation can contribute to the pathogenesis. This study aimed to compare urinary inflammatory and oxidative stress markers between the no/mild BPD group and moderate/severe BPD group and between BPD cases with significant early lung disease like respiratory distress syndrome (RDS) (‘classic’ BPD) and with minimal early lung disease (‘atypical’ BPD). A total of 60 patients who were a gestational age < 30 weeks or a birth weight < 1250 g were included. Urine samples were obtained on the 1st, 3rd and 7th day of life and measured the levels of leukotriene E4 (LTE4) and 8-hydroxydeoxyguanosine (8-OHdG). The 8-OHdG values on the 3rd day showed significant correlation to duration of mechanical ventilation. The 8-OHdG levels on the 7th day were the independent risk factor for developing moderate/severe BPD. In ‘classic’ BPD, the 8-OHdG values on the 3rd day were higher than those of ‘atypical’ BPD. In ‘atypical’ BPD, the LTE4 values on the 7th day were higher than the values in ‘classic’ BPD. These results suggest that oxidative DNA damage could be the crucial mechanism in the pathogenesis of current BPD and the ongoing inflammatory process could be an important mechanism in ‘atypical’ BPD. 相似文献
8.
Koshy L Dwarakanath BS Raj HG Chandra R Mathew TL 《Indian journal of experimental biology》2003,41(11):1273-1278
Well known antioxidants-coumarins (7,8-dihydroxy-4-methyl coumarin-DHMC and 7,8-diacetoxy-4-methyl coumarin-DAMC) and flavonoids (quercetin-Q and quercetin penta-acetate-QPA) were investigated for their pro-oxidant effects in two human tumor cell lines. The breast carcinoma cell line (MDA-MB-468) was found to be more sensitive to treatment by the drugs-DAMC, Q and QPA at 10 microM than the glioma cell line (U-87MG), while DHMC was non toxic in both cell lines at this concentration. In MDA-MB-468 distinct growth inhibition was observed by 48 hr post treatment. Paradoxically, an increase in the formazan production was revealed by MTT assay at this time indicating an increase in the production of free radicals. An increase in the levels of reactive oxygen species (ROS) was also confirmed by DCFH-DA assay. In cells treated with DAMC, Q and QPA an increase in the percentage of cells with the hypodiploid DNA content was suggestive of apoptotic cell death. Taken together, these results suggest that an increase in oxidative stress caused by the pro-oxidant action of these drugs is responsible for cell death. 相似文献
9.
10.
细胞存活与凋亡受生长因子活化的ERK与应激活化的JNK-p38信号传导通路二者的动态平衡所控制,JNK-p38通路的持续活化及ERK通路的共济失活是细胞凋亡的关键所在。H2O2参与多种细胞类型的信号传导,并可诱导早期应答基因的表达。转录因子的激活与抗氧化酶合成有一定的因果关系,但中间环节尚待进一步阐明。 相似文献
11.
12.
Peter Dorfmüller Marie-Camille Chaumais Maria Giannakouli Ingrid Durand-Gasselin Nicolas Raymond Elie Fadel Olaf Mercier Frédéric Charlotte David Montani Gérald Simonneau Marc Humbert Frédéric Perros 《Respiratory research》2011,12(1):1-17
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression. 相似文献
13.
Moreno MC Campanelli J Sande P Sánez DA Keller Sarmiento MI Rosenstein RE 《Free radical biology & medicine》2004,37(6):803-812
Glaucoma is an optic neuropathy in which retinal ganglion cells die probably through an apoptotic process. Apoptosis is known to involve free radicals in several systems including the retina. In this context, the aim of the present work was to analyze retinal oxidative damage in rats with glaucoma induced by the chronic injection of hyaluronic acid in the eye anterior chamber. The results showed a significant decrease in total retinal superoxide dismutase and catalase activities after 6 and 3 weeks of treatment with hyaluronic acid, respectively. Also, although GPX activity increased after 10 weeks of ocular hypertension, GSH levels significantly decreased at 6 weeks of treatment with hyaluronic acid. Moreover, retinal lipid peroxidation significantly increased in a time-of-hypertension-dependent manner. On the other hand, a significant decrease in both diurnal and nocturnal retinal melatonin content was detected at 3, 6, or 10 weeks of treatment with hyaluronic acid. The present results suggest that retinal oxidative stress may be involved in glaucomatous cell death. Thus, manipulation of intracellular redox status using antioxidants may be a new therapeutic tool to prevent glaucomatous neurodegeneration. 相似文献
14.
The parenteral administration of alpha-lipoic acid (LA) protected against chromate induced oxidative stress in mouse liver. A shift in Cr induced pro-oxidant state to antioxidant-state by LA was noteworthy. The degree of protection was significant and similar in different LA administration regimens (prior-, co- and post- parenteral Cr exposure) explored. An improved status of the tissue antioxidants by LA appeared to be the mechanism of mitigation. The results are of chemopreventive value and suggest a possible alternative to ascorbic acid for abrogation of Cr toxicity. 相似文献
15.
Moreira PI Zhu X Liu Q Honda K Siedlak SL Harris PL Smith MA Perry G 《Biological research》2006,39(1):7-13
Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-beta deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis. 相似文献
16.
Vitamin C prevents DNA mutation induced by oxidative stress 总被引:10,自引:0,他引:10
The precise role of vitamin C in the prevention of DNA mutations is controversial. Although ascorbic acid has strong antioxidant properties, it also has pro-oxidant effects in the presence of free transition metals. Vitamin C was recently reported to induce the decomposition of lipid hydroperoxides independent of metal interactions, suggesting that it may cause DNA damage. To directly address the role of vitamin C in maintaining genomic integrity we developed a genetic system for quantifying guanine base mutations induced in human cells under oxidative stress. The assay utilized a plasmid construct encoding the cDNA for chloramphenicol acetyl transferase modified to contain an amber stop codon, which was restored to wild type by G to T transversion induced by oxidative stress. The mutation frequency was determined from the number of plasmids containing the wild type chloramphenicol acetyl transferase gene rescued from oxidatively stressed cells. Cells were loaded with vitamin C by exposing them to dehydroascorbic acid, thereby avoiding transition metal-related pro-oxidant effects of ascorbic acid. We found that vitamin C loading resulted in substantially decreased mutations induced by H(2)O(2). Depletion of glutathione led to cytotoxicity and an increase in H(2)O(2)-induced mutation frequency; however, mutation frequency was prominently decreased in depleted cells preloaded with vitamin C. The mutation results correlated with a decrease in total 8-oxo-guanine measured in genomic DNA of cells loaded with vitamin C and oxidatively stressed. These findings directly support the concept that high intracellular concentrations of vitamin C can prevent oxidation-induced mutations in human cells. 相似文献
17.
Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding 总被引:1,自引:0,他引:1
Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. 相似文献
18.
Sedriep S Xia X Marotta F Zhou L Yadav H Yang H Soresi V Catanzaro R Zhong K Polimeni A Chui DH 《Journal of biological regulators and homeostatic agents》2011,25(2):187-194
The main object of this study is to examine the effect of Klamin?, a nutraceutical containing phenylethylamine, phycocyanins, mycosporine-like aminoacids and aphanizomenon flos aquae-phytochrome on the learning and memory ability, the oxidative status and cerebral erythropoietin and its receptor EPO/EPOR system in prematurely senescent (PS) mice. A total of 28 PS mice, selected according to a prior T-maze test, and 26 non-prematurely senescent mice (NPS) mice were chosen. PS animals were divided into 3 groups and followed for 4 weeks: A) normal chow diet; B) added with Klamin? at 20 mg/kg/day (low dose); C) added with Klamin? at 100mg/kg/day (high dose). A further group of NPS mice given either normal food (group D) or high dose Klamin? (group E) was also considered. The behavioral procedures of spatial learning ability (Morris test) showed that PS mice had significantly longer learning time as compared to their NPS counterpart (p<0.01), but this effect was prevented especially in mice supplemented with high-dose Klamin? (p<0.05) which improved performances in NPS mice (p<0.05). High-dose Klamin? supplementation restored the depleted total thiol concentration in the brain observed in PS mice while normalizing their increased malonildialdehyde level (p<0.05). Moreover, the high-dosage only caused a significant upregulation of EPO/EPOR system both in PS and in NPS animals (p<0.05). Taken together, these data suggest that this specific alga Klamath extract has considerable antioxidant and adaptogenic properties, also through a stimulatory effect of cerebral EPO/EPO system. 相似文献
19.
Patra K Bose S Sarkar S Rakshit J Jana S Mukherjee A Roy A Mandal DP Bhattacharjee S 《Chemico-biological interactions》2012,195(3):231-239
Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug. 相似文献