首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Clostridium acetobutylicum ATCC 824 cells harvested from a phosphate-limited chemostat culture maintained at pH 4.5 had intracellular concentrations of acetate, butyrate, and butanol which were 13-, 7-, and 1.3-fold higher, respectively, than the corresponding extracellular concentrations. Cells from a culture grown at pH 6.5 had intracellular concentrations of acetate and butyrate which were only 2.2-fold higher than the respective external concentrations. The highest intracellular concentrations of these acids were attained at ca. pH 5.5. When cells were suspended in anaerobic citrate-phosphate buffer at pH 4.5, exogenous acetate and butyrate caused a concentration-dependent decrease in the intracellular pH, while butanol had relatively little effect until the external concentration reached 150 mM. Acetone had no effect at concentrations up to 200 mM. These data demonstrate that acetate and butyrate are concentrated within the cell under acidic conditions and thus tend to lower the intracellular pH. The high intracellular butyrate concentration presumably leads to induction of solvent production, thereby circumventing a decrease in the intracellular pH great enough to be deleterious to the cell.  相似文献   

2.
The addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production and also increase glucose utilization by Clostridium beijerinckii NCIMB 8052. RNA and enzyme analyses indicated that coenzyme A (CoA) transferase was highly expressed and has higher activity in C. beijerinckii NCIMB 8052 grown in MP2 medium containing added sodium acetate than in the microorganism grown without sodium acetate. RNA analysis suggested the existence of a sol operon and confirmed the presence of a ptb-buk operon in C. beijerinckii NCIMB 8052. In addition to CoA transferase, C. beijerinckii NCIMB 8052 grown in MP2 medium containing added acetate demonstrated higher acetate kinase- and butyrate kinase-specific activity than when the culture was grown in MP2 medium containing no added acetate. Southern blot analysis with chromosomal DNA isolated from solventogenic and degenerated C. beijerinckii NCIMB 8052 indicated that C. beijerinckii NCIMB 8052 strain degeneration does not involve loss of the CoA transferase genes. The addition of acetate to MP2 medium may induce the expression of the sol operon, which ensures solvent production and prevents strain degeneration in C. beijerinckii NCIMB 8052.  相似文献   

3.
Summary When Clostridium acetobutylicum was grown in continuous culture under phosphate limitation (0.74 mM) at a pH of 4.3, glucose was fermented to butanol, acetone and ethanol as the major products. At a dilution rate of D=0.025 h–1 and a glucose concentration of 300 mM, the maximal butanol and acetone concentrations were 130 mM and 74 mM, respectively. 20% of the glucose remained in the medium. On the basis of these results a two-stage continuous process was developed in which 87.5% of the glucose was converted into butanol, acetone and ethanol. The cells and minor amounts of acetate and butyrate accounted for the remaining 12.5% of the substrate. The first stage was run at D=0.125 h–1 and 37° C and the second stage at D=0.04 h–1 and 33° C. High yields of butanol and acetone were also obtained in batch culture under phosphate limitation.  相似文献   

4.
Various methods of continuous flow culture of Clostridium acetobutylicum NCIB 8052 were investigated, with the aim of obtaining prolonged production of acetone and butanol. In ammonia-limited chemostat culture, maximal concentrations of solvents were obtained at pH 5–5 at a relatively high biomass concentration of 1.3–2.0 g/1 dry weight maintained at a dilution rate of 0.06/h. Similar dependence of solvent production on the sustenance of a relatively high cell density was observed in magnesium- or phosphate-limited chemostat cultures. Solvent production was always transient, however, with a shift to production of only acetic and butyric acids being observed after 4–16 volume changes. Longer term solvent production was obtainable under conditions of glucose limitation but the solvent yield was low. Cultivation in a pH-auxostat permitted solvent production in reasonably high yield over at least 70 volume changes with no signs of culture degeneration. Although none of the continuous flow cultures achieved a true steady state, we conclude that turbidostat or pH-auxostat culture are the methods of choice for continuous solvent production by Cl. acetobutylicum NCIB 8052.  相似文献   

5.
Thirty-four strains representing 15 species of anaerobic bacteria were screened for acetone, isopropanol, and n-butanol (solvent) production. Under our culture conditions, several strains of Clostridium beijerinckii and C. aurantibutyricum produced at least 40 mM n-butanol (C. acetobutylicum strains produced up to 41 mM n-butanol under similar conditions). Both solvent-producing and non-solvent-producing strains of C. beijerinckii have high DNA homology with a reference strain of C. beijerinckii. Strains labeled “Clostridium butylicum” are phenotypically similar to C. beijerinckii and showed at least 78% DNA homology to a reference strain of C. beijerinckii. Therefore, these “C. butylicum” strains are members of C. beijerinckii. An earlier DNA homology study has shown that C. beijerinckii, C. aurantibutyricum, and C. acetobutylicum are distinct species.  相似文献   

6.
The acetone–butanol (AB) fermentation process in the anaerobic endospore-forming Gram-positive bacterium Clostridium acetobutylicum is useful as a producer of biofuels, particularly butanol. Recent work has concentrated on trying to improve the efficiency of the fermentation method, either through changes in the environmental conditions or by modifying the genome to selectively favour the production of one particular solvent over others. Fermentation of glucose by C. acetobutylicum occurs in two stages: initially the acids acetate and butyrate are produced and excreted and then, as the external pH falls, acetate and butyrate are ingested and further metabolised into the solvents acetone, butanol and ethanol. In order to optimise butanol production, it is important to understand how pH affects the enzyme-controlled reactions in the metabolism process. We adapt an ordinary differential equation model of the metabolic network with regulation at the genetic level for the required enzymes; parametrising the model using experimental data generated from continuous culture, we improve on previous point predictions (S. Haus, S. Jabbari, T. Millat, H. Janssen, R.-J. Fisher, H. Bahl, J. R. King, O. Wolkenhauer, A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture, BMC Systems Biology 5 (2011)) [1] both by using a different optimisation approach and by computing confidence intervals and correlation coefficients. We find in particular that the parameters are ill-determined from the data and that two separate clusters of parameters appear correlated, reflecting the importance of two metabolic intermediates. We extend the model further to include another aspect of the clostridial survival mechanism, sporulation, and by computation of the Akaike Information Criterion values find that the there is some evidence for the presence of sporulation during the shift.  相似文献   

7.
Microbial fuel cells (MFCs) were used to monitor metabolism changes in Clostridium acetobutylicum fermentations. When MFCs were inoculated with C. acetobutylicum, they generated a unique voltage output pattern where two distinct voltage peaks occurred over a weeklong period. This result was markedly different to previously studied organisms which usually generate one sustained voltage peak. Analysis of the fermentation products indicated that the dual voltage peaks correlated with glucose metabolism. The first voltage peak correlated with acidogenic metabolism (acetate and butyrate production) and the second peak with solventogenic metabolism (acetone and butanol production). This demonstrates that MFCs can be applied as a novel tool to monitor the shift from acid production to solvent production in C. acetobutylicum.  相似文献   

8.
Biosynthesis of acetone and n-butanol is naturally restricted to the group of solventogenic clostridia with Clostridium acetobutylicum being the model organism for acetone-butanol-ethanol (ABE) fermentation. According to limited genetic tools, only a few rational metabolic engineering approaches were conducted in the past to improve the production of butanol, an advanced biofuel. In this study, a phosphotransbutyrylase-(Ptb) negative mutant, C. acetobutylicum ptb::int(87), was generated using the ClosTron methodology for targeted gene knock-out and resulted in a distinct butyrate-negative phenotype. The major end products of fermentation experiments without pH control were acetate (3.2?g/l), lactate (4.0?g/l), and butanol (3.4?g/l). The product pattern of the ptb mutant was altered to high ethanol (12.1?g/l) and butanol (8.0?g/l) titers in pH?≥?5.0-regulated fermentations. Glucose fed-batch cultivation elevated the ethanol concentration to 32.4?g/l, yielding a more than fourfold increased alcohol to acetone ratio as compared to the wildtype. Although butyrate was never detected in cultures of C. acetobutylicum ptb::int(87), the mutant was still capable to take up butyrate when externally added during the late exponential growth phase. These findings suggest that alternative pathways of butyrate re-assimilation exist in C. acetobutylicum, supposably mediated by acetoacetyl-CoA:acyl-CoA transferase and acetoacetate decarboxylase, as well as reverse reactions of butyrate kinase and Ptb with respect to previous studies.  相似文献   

9.
Clostridial acetone–butanol–ethanol (ABE) fermentation is a natural source for microbial n-butanol production and regained much interest in academia and industry in the past years. Due to the difficult genetic accessibility of Clostridium acetobutylicum and other solventogenic clostridia, successful metabolic engineering approaches are still rare. In this study, a set of five knock-out mutants with defects in the central fermentative metabolism were generated using the ClosTron technology, including the construction of targeted double knock-out mutants of C. acetobtuylicum ATCC 824. While disruption of the acetate biosynthetic pathway had no significant impact on the metabolite distribution, mutants with defects in the acetone pathway, including both acetoacetate decarboxylase (Adc)-negative and acetoacetyl-CoA:acyl-CoA transferase (CtfAB)-negative mutants, exhibited high amounts of acetate in the fermentation broth. Distinct butyrate increase and decrease patterns during the course of fermentations provided experimental evidence that butyrate, but not acetate, is re-assimilated via an Adc/CtfAB-independent pathway in C. acetobutylicum. Interestingly, combining the adc and ctfA mutations with a knock-out of the phosphotransacetylase (Pta)-encoding gene, acetate production was drastically reduced, resulting in an increased flux towards butyrate. Except for the Pta-negative single mutant, all mutants exhibited a significantly reduced solvent production.  相似文献   

10.
Mutants of Clostridium acetobutylicum ATCC 824 exhibiting resistance to 2-bromobutyrate or rifampin were isolated after nitrosoguanidine treatment. Mutants were screened for solvent production by using an automated alcohol test system. Isolates were analyzed for levels of butanol, ethanol, acetone, butyrate, acetate, and acetoin in stationary-phase batch cultures. The specific activities of NADH- and NADPH-dependent butanol dehydrogenase and butyraldehyde dehydrogenase as well as those of acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase (butyrate-acetoacetate coenzyme A-transferase [EC 2.8.3.9]) (CoA-transferase), butyrate kinase, and phosphotransbutyrylase were measured at the onset of stationary phase. Rifampin-resistant strain D10 and 2-bromobutyrate mutant R were found to be deficient in only CoA-transferase, while several other mutants exhibited reduced butyraldehyde dehydrogenase and butanol dehydrogenase activities as well. The colony morphology of 2-bromobutyrate mutant R was similar to that of the parent on RCM medium; however, it had about 1/10 the level of CoA-transferase and increased levels of butanol dehydrogenase and butyraldehyde dehydrogenase. A nonsporulating, spontaneously derived degenerated strain exhibited reduced levels of butyraldehyde dehydrogenase, butanol, dehydrogenase, and CoA-transferase compared with those of the original strain. When C. acetobutylicum ATCC 824 was grown on medium containing low levels of 2-bromobutyrate, an altered colony morphology was observed. Not all strains resistant to 2-bromobutyrate (12 mM) were non-solvent-producing strains.  相似文献   

11.
A clostridial strain has been isolated that produced n-butanol, ethanol, butyrate, and acetate as major fermentation products from glucose but no acetone. At a pH of 6.6, n-butanol was formed by this microorganism only during growth. On the basis of its physiological characteristics and DNA-DNA homology data, the strain was assigned to the “Clostridium tetanomorphum” group (S. Nakamura, I. Okado, T. Abe, and S. Nishida, J. Gen. Microbiol. 113:29-35, 1979). All members of this group were shown to produce n-butanol from glucose as the major fermentation product, whereas C. cochlearium produced it in only minor amounts.  相似文献   

12.
Extracts prepared from non-solvent-producing cells of Clostridium acetobutylicum contained methyl viologen-linked hydrogenase activity (20 U/mg of protein at 37°C) but did not display carbon monoxide dehydrogenase activity. CO addition readily inhibited the hydrogenase activity of cell extracts or of viable metabolizing cells. Increasing the partial pressure of CO (2 to 10%) in unshaken anaerobic culture tube headspaces significantly inhibited (90% inhibition at 10% CO) both growth and hydrogen production by C. acetobutylicum. Growth was not sensitive to low partial pressures of CO (i.e., up to 15%) in pH-controlled fermentors (pH 4.5) that were continuously gassed and mixed. CO addition dramatically altered the glucose fermentation balance of C. acetobutylicum by diverting carbon and electrons away from H2, CO2, acetate, and butyrate production and towards production of ethanol and butanol. The butanol concentration was increased from 65 to 106 mM and the butanol productivity (i.e., the ratio of butanol produced/total acids and solvents produced) was increased by 31% when glucose fermentations maintained at pH 4.5 were continuously gassed with 85% N2-15% CO versus N2 alone. The results are discussed in terms of metabolic regulation of C. acetobutylicum saccharide fermentations to achieve maximal butanol or solvent yield.  相似文献   

13.
We investigated the intracellular physiological conditions associated with the induction of butanol-producing enzymes in Clostridium acetobutylicum. During the acidogenic phase of growth, the internal pH decreased in parallel with the decrease in the external pH, but the internal pH did not go below 5.5 throughout batch growth. Butanol was found to dissipate the proton motive force of fermenting C. acetobutylicum cells by decreasing the transmembrane pH gradient, whereas the membrane potential was affected only slightly. In growing cells, the switch from acid to solvent production occurred when the internal undissociated butyric acid concentration reached 13 mM and the total intracellular undissociated acid concentration (acetic plus butyric acids) was at least 40 to 45 mM. Similar values were obtained when cultures were supplemented with 50 mM butyric acid initially or when a phosphate-buffered medium was used instead of an acetate-buffered medium. To measure the induction of the enzymes involved in solvent synthesis, we determined the rates of conversion of butyrate to butanol in growing cells. The rate of butanol formation reached a maximum in the mid-solvent phase, when the butanol concentration was 50 mM. Although more solvent accumulated later, de novo enzyme synthesis decreased and then ceased.  相似文献   

14.
Addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production by Clostridium beijerinckii BA101, a solvent-hyperproducing mutant derived from C. beijerinckii NCIMB 8052. C. beijerinckii BA101 demonstrated a greater increase in solvent production than C. beijerinckii NCIMB 8052 when sodium acetate was added to MP2 medium. In 1-l batch fermentations, C. beijerinckii BA101 produced 32.6 g/l total solvents, with butanol at 20.9 g/l, when grown in MP2 medium containing 60 mM sodium acetate and 8% glucose. To our knowledge, these values represent the highest solvent and butanol concentrations produced by a solventogenic Clostridium strain when grown in batch culture. Received: 29 September 1998 / Received revision: 13 February 1999 / Accepted: 26 February 1999  相似文献   

15.
16.
Megasphaera elsdenii T81 grew on either dl-lactate or d-glucose at similar rates (0.85 h?1) but displayed major differences in the fermentation of these substrates. Lactate was fermented at up to 210-mM concentration to yield acetic, propionic, butyric, and valeric acids. The bacterium was able to grow at much higher concentrations of d-glucose (500 mM), but never removed more than 80 mM of glucose from the medium, and nearly 60 % the glucose removed was sequestered as intracellular glycogen, with low yields of even-carbon acids (acetate, butyrate, caproate). In the presence of both substrates, glucose was not used until lactate was nearly exhausted, even by cells pregrown on glucose. Glucose-grown cultures maintained only low extracellular concentrations of acetate, and addition of exogenous acetate increased yields of butyrate, but not caproate. By contrast, exogenous acetate had little effect on lactate fermentation. At pH 6.6, growth rate was halved by exogenous addition of 60 mM propionate, 69 mM butyrate, 44 mM valerate, or 33 mM caproate; at pH 5.9, these values were reduced to 49, 49, 18, and 22 mM, respectively. The results are consistent with this species’ role as an effective ruminal lactate consumer and suggest that this organism may be useful for industrial production of volatile fatty acids from lactate if product tolerance could be improved. The poor fermentation of glucose and sensitivity to caproate suggests that this strain is not practical for industrial caproate production.  相似文献   

17.
Summary When continuous, steady-state, glucose-limited cultures ofClostridium acetobutylicum were sparged with CO, the completely or almost completely acidogenic fermentations became solventogenic. Alcohol (butanol and ethanol) and lactate production at very high specific production rates were initiated and sustained without acetone, and little or no acetate and butyrate formation. In one fermentation, strong butyrate uptake without acetone formation was observed. Growth could be sustained even with 100% inhibition of H2 formation. Although CO gasing inhibited growth up to 50%, and H2 formation up to 100%, it enhanced the rate of glucose uptake up to 300%. TheY ATP was strongly affected and mostly reduced with respect to its steady-state value. The results support the hypothesis that solvent formation is triggered by an altered electron flow.  相似文献   

18.
A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided.  相似文献   

19.
Clostridum acetobutylicum strain P262 fermented glucose, pyruvate, or lactate, and the butyrate production was substrate-dependent. Differences in butyrate yield could not be explained by changes in butyrate kinase activities, but the butyrate production was inversely related to acetate kinase activity. The acetate kinase had a pH optimum of 8.0, aK m for acetate of 160 mM, and ak cat of 16,800 min-1. The enyzme had a native molecular mass of 78 kDa; the size of 42 kDa on SDS-PAGE indicated that the acetate kinase of strain P262 was a homodimer.Abbreviations Acetyl-P Acetyl-phosphate - MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  相似文献   

20.
To improve butanol selectivity, Clostridium acetobutylicum M5(pIMP1E1AB) was constructed by adhE1-ctfAB complementation of C. acetobutylicum M5, a derivative strain of C. acetobutylicum ATCC 824, which does not produce solvents due to the lack of megaplasmid pSOL1. The gene products of adhE1-ctfAB catalyze the formation of acetoacetate and ethanol/butanol with acid re-assimilation in solventogenesis. Effects of the adhE1-ctfAB complementation of M5 were studied by batch fermentations under various pH and glucose concentrations, and by flux balance analysis using a genome-scale metabolic model for this organism. The metabolically engineered M5(pIMP1E1AB) strain was able to produce 154 mM butanol with 9.9 mM acetone at pH 5.5, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.84, which is much higher than that (0.57 at pH 5.0 or 0.61 at pH 5.5) of the wild-type strain ATCC 824. Unlike for C. acetobutylicum ATCC 824, a higher level of acetate accumulation was observed during fermentation of the M5 strain complemented with adhE1 and/or ctfAB. A plausible reason for this phenomenon is that the cellular metabolism was shifted towards acetate production to compensate reduced ATP production during the largely growth-associated butanol formation by the M5(pIMP1E1AB) strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号