首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duan Y  Diao Z  Liu H  Cai M  Wang F  Lan T  Wu W 《Plant molecular biology》2010,74(6):605-615
The evolution of plant vascular tissue is tightly linked to the evolution of specialised cell walls. Mutations in the QUASIMODO2 (QUA2) gene from Arabidopsis thaliana were previously shown to result in cell adhesion defects due to reduced levels of the cell wall component homogalacturonic acid. In this study, we provide additional information about the role of QUA2 and its closest paralogues, QUASIMODO2 LIKE1 (QUL1) and QUL2. Within the extensive QUA2 family, our phylogenetic analysis shows that these three genes form a clade that evolved with vascular plants. Consistent with a possible role of this clade in vasculature development, QUA2 is highly expressed in the vascular tissue of embryos and inflorescence stems and overexpression of QUA2 resulted in temperature-sensitive xylem collapse. Moreover, in-depth characterisation of qua2 qul1 qul2 triple mutant and 35S::QUA2 overexpression plants revealed contrasting temperature-dependent stem development with dramatic effects on stem width. Taken together, our results suggest that the QUA2-specific clade contributed to the evolution of vasculature and illustrate the important role that modification of cell wall composition plays in the adaptation to changing environmental conditions, including changes in temperature.  相似文献   

2.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

3.
The structure of furcellarans obtained from red algae Furcellaria lumbricalis collected in Estonia was determined. Native and alkali-modified furcellarans were examined by gas chromatography/mass spectrometry (GC/MS), and 13C-nuclear magnetic resonance spectroscopy (NMR) and were compared with commercial furcellaran (FMC Food Ingredients). The polysaccharide preparation consisted mainly of (1→3) linked β-D-galactopyranose, (1→4) linked 3,6-anhydro-α-D-galactopyranose and (1→3) linked β-D-galactopyranose 4-sulphate. Alkaline treatment removed the sulphate precursor sequences with formation of 3,6-anhydrogalactose that improved the furcellaran gelling ability.  相似文献   

4.
The biocatalytic ability of transgenic crown galls of Panax quinquefolium was evaluated by using eugenol (1) as a substrate and suspension cultures of Nicotiana tabacum as control system. Three biotransformed products, namely: 2-methoxy-4-(2-propenyl)phenyl-O-β-d-glucopyranoside (2, 67.11%), 2-methoxy-4-(2-propenyl)phenyl-O-β-d-glucopyranosyl (6′ → 1″)-β-d-xylopyranoside (3, 2.85%) and methyl eugenol (4, 14.30%) were obtained after 5 days of administration of eugenol to the suspension cultures of transgenic crown galls of P. quinquefolium. In contrast, only one product, compound 2 (15.41%), was obtained in suspension cultures of N. tabacum after 5 days of incubation. The results indicated that the glycosylation ability of transgenic crown galls of P. quinquefolium was much higher than that of the cultured cells of N. tabacum.  相似文献   

5.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

6.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

7.
Two new asterosaponins, diplasteriosides A and B, bearing the same β-D-Fucp-(1→2)-β-D-Galp-(1→4)-[β-D-Quip-(1→2)]-β-D-Quip-(1→3)-β-D-Quip-(1→ oligosaccharide chains linked to the C6 atom of the known genins, 3-O-sulfates of thornasterols A and B, respectively, were isolated from the Antarctic Diplasterias brucei starfish along with the previously known asteriidoside A. The structures of the new compounds were elucidated by two-dimensional NMR spectroscopy and mass spectrometry. Cytotoxicities of the isolated asterosaponins against the human colon cancer HCT-116, human breast cancer T-47D cell line, and human melanoma cancer RPMI-7951 cell lines were studied.  相似文献   

8.
9.
10.
The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 →, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in Mw = 62 kDa, corresponding to 64 repeating units in the EPS.  相似文献   

11.
The isoflavonoid composition of red clover (Trifolium pratense L.) has been studied. The following compounds have been detected: cyclopolyol (+)-pinitol, not found in clover before; known isoflavones formononetin, prunetin, genistein, and prunetin-4′-O-β-D-glucopyranoside; isoflavone monogalactosides formononetin-7-O-β-D-galactopyranoside, inermin-3-O-β-D-galactopyranoside, and genistein-7-O-β-D-galactopyranoside; and a novel compound, prunetin-4′-α-D-glucopyranoside. The structures of these compounds have been proven by UV, IR, 1H NMR, 13C NMR, mass, and circular dichroism spectra. (+)-Pinitol is known to possess biological activity.  相似文献   

12.
Bioconversion of quercetin glucosides using four generally recognized as safe (GRAS) organisms (Aspergillus oryzae, Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) was evaluated by measuring changes in the levels of quercetin compounds of onion. Of the four organisms, S. cerevisiae increased the content of quercetin-3-O-β-d-glucoside (III; isoquercitrin) and quercetin (IV), whereas decreasing quercetin-3,4′-O-β-d-glucoside (I) and quercetin-4′-O-β-d-glucoside (II). Also, S. cerevisiae converted authentic compound I to III, and II to IV, respectively. These results suggest that S. cerevisiae can be used to increase the levels of isoquercitrin (III), the most bioavailable quercetin compound in onion.  相似文献   

13.
Crude extracts of the leaves of Spiraea prunifolia Sieb. showed high plant-growth-inhibiting activity comparable to that of S. thunbergii extracts. To isolate the causal compound in S. prunifolia, we performed bioassay-directed purification by monitoring the biological activity per unit weight of the organism containing the bioactive compound (total activity). We isolated 1-O-cis-cinnamoyl-β-D-glucopyranose (cis-CG) and identified it as the most important growth-inhibiting constituent in the crude extracts. We did not detect 6-O-(4′-hydroxy-2′-methylenebutyroyl)-1-O-cis-cinnamoyl-β-D-glucopyranose (cis-BCG) in S. prunifolia, though it is a major plant growth inhibitor in S. thunbergii together with cis-CG. We estimated the cis-CG content in S. prunifolia to be 3.84 mmol kg−1 F.W. This amount is comparable to the cis-CG plus cis-BCG content in S. thunbergii (3.59 mmol kg−1 F.W.). This indicates that S. prunifolia and S. thunbergii have equally high potential to inhibit plant growth, and cis-CG acts as the most important plant-growth inhibitor in S. prunifolia extracts.  相似文献   

14.
A glucosyltransferase (GT) of Phytolacca americana (PaGT3) was expressed in Escherichia coli and purified for the synthesis of two O-β-glucoside products of trans-resveratrol. The reaction was moderately regioselective with a ratio of 4′-O-β-glucoside: 3-O-β-glucoside at 10:3. We used not only the purified enzyme but also the E. coli cells containing the PaGT3 gene for the synthesis of glycoconjugates. E. coli cell cultures also have other advantages, such as a shorter incubation time compared with cultured plant cells, no need for the addition of exogenous glucosyl donor compounds such as UDP-glucose, and almost complete conversion of the aglycone to the glucoside products. Furthermore, a homology model of PaGT3 and mutagenesis studies suggested that His-20 would be a catalytically important residue.  相似文献   

15.
The genes encoding the catalytic domains (CD) of the three endoglucanases (EG I; Cel7B, EG II; Cel5A, and EG III; Cel12A) from Trichoderma reesei QM9414 were expressed in Escherichia coli strains Rosetta-gami B (DE3) pLacI or Origami B (DE3) pLacI and were found to produce functional intracellular proteins. Protein production by the three endoglucanase transformants was evaluated as a function of growth temperature. Maximal productivity of EG I-CD at 15°C, EG II-CD at 20°C and EG III at 37°C resulted in yields of 6.9, 72, and 50 mg/l, respectively. The endoglucanases were purified using a simple purification method based on removing E. coli proteins by isoelectric point precipitation. Specific activity toward carboxymethyl cellulose was found to be 65, 49, and 15 U/mg for EG I-CD, EG II-CD, and EG III, respectively. EG II-CD was able to cleave 1,3–1,4-β-d-glucan and soluble cellulose derivatives. EG III was found to be active against cellulose, 1,3–1,4-β-d-glucan and xyloglucan, while EG I-CD was active against cellulose, 1,3–1,4-β-d-glucan, xyloglucan, xylan, and mannan.  相似文献   

16.
A strictly anaerobic mesophilic chitinolytic bacterial strain identified as Clostridium paraputrificum J4 was isolated from human feces. In response to various types of growth substrates, the bacterium produced an array of chitinolytic enzymes representing significant components of the J4 strain secretome. The excreted active proteins were characterized by estimating the enzymatic activities of endochitinase, exochitinase, and N-acetylglucosaminidase induced by cultivation in medium M-10 with colloidal chitin. The enzyme activities produced by J4 strain cultivated in medium M-10 with glucose were significantly lower. The spectrum of extracellularly excreted proteins was separated by SDS-PAGE. The chitinase variability was confirmed on zymograms of renatured SDS-PAGE. The enzymes were visualized under ultraviolet light by using 4-methylumbelliferyl derivatives of N-acetyl-β-d-glucosaminide, N,N′-diacetyl-β-d-chitobiose, or N,N′,N˝-triacetyl-β-d-chitotriose for β-N-acetylglucosaminidase, chitobiosidase, or endochitinase activities, respectively. Protein components of the secretome were separated by 2D-PAGE analysis. The distinct protein bands were excised, isolated, and subsequently characterized by using MALDI-TOF/TOF tandem mass spectrometry. The final identification was performed according to sequence homology by database searching.  相似文献   

17.
Recently, the prenyltransferase SirD was found to be responsible for the O-prenylation of tyrosine in the biosynthesis of sirodesmin PL in Leptosphaeria maculans. In this study, the behavior of SirD towards phenylalanine/tyrosine and tryptophan derivatives was investigated. Product formation has been observed with 12 of 19 phenylalanine/tyrosine derivatives. It was shown that the alanine structure attached to the benzene ring and an electron donor, e.g., OH or NH2, at its para-position are essential for the enzyme activity. Modifications were possible both at the side chain and the benzene ring. Enzyme products from seven phenylalanine/tyrosine derivatives were isolated and characterized by MS and NMR analyses including HSQC and HMBC and proven to be O- or N-prenylated derivatives at position C4 of the benzene rings. K M values of six selected derivatives were found in the range of 0.10–0.68 mM. Catalytic efficiencies (K cat/K M ) were determined in the range of 430–1,110 s−1·M−1 with l-tyrosine as the best substrate. In addition, 7 of 14 tested tryptophan analogs were also accepted by SirD and converted to C7-prenylated derivatives, which was confirmed by comparison with products obtained from enzyme assays using a 7-dimethylallyltryptophan synthase 7-DMATS from Aspergillus fumigatus.  相似文献   

18.
Huang B  Lin W  Cheung PC  Wu J 《Current microbiology》2011,62(4):1160-1167
Autolysis is an important physiological process found in fungal cultivation. However, there is hitherto no report on the autolysis of Pleurotus tuber-regium. We have investigated the enzymes secreted by temperature-induced (40°C as treatment versus 10°C as control) autolysis of the mycelium of P. tuber-regium grown in submerged cultivation. A comparison between the intracellular proteins (inside the mycelium) and the extracellular proteins (in the culture medium) of the treatment and control by proteomic analysis involving 2D PAGE and MALDI–TOF–MS was made. Twenty-two up-regulated protein spots were detected and eight proteins were identified. They included proteasome which participates in the ubiquitin–proteasome pathway; β-1,3-glucanosyltransferase and tubulin which are involved in the renewal and repair of cell wall; protease and endoglucanase which promote the natural degradation of cell wall and cytoplasm; 14-3-3 protein which takes part in cell signal transduction; and two putative proteins presumably relate to the autolysis process. These identified proteins suggest partially the metabolic processes of the autolysis in the P. tuber-regium mycelium.  相似文献   

19.
It has been previously reported that a glucoamylase from Curvularia lunata is able to hydrolyze the terminal 1,2-linked rhamnosyl residues of sugar chains at C-3 position of steroidal saponins. In this work, the enzyme was isolated and identified after isolation and purification by column chromatography including gel filtration and ion-exchange chromatography. Analysis of protein fragments by MALDI-TOF/TOF™ proteomics Analyzer indicated the enzyme to be 1,4-alpha-D-glucan glucohydrolase EC 3.2.1.3, GA and had considerable homology with the glucoamylase from Aspergillus oryzae. We first found that the glucoamylase was produced from C. lunata and was able to hydrolyze the terminal rhamnosyl of steroidal saponins. The enzyme had the general character of glucoamylase, which hydrolyze starch. It had a molecular mass of 66 kDa and was optimally active at 50°C, pH 4, and specific activity of 12.34 U mg of total protein−1 under the conditions, using diosgenin-3-O-α-L-rhamnopyranosyl(1→4)-[α-L-rhamnopyranosyl (1→2)]-β-D-glucopyranoside (compound II) as the substrate. Furthermore, four kinds of commercial glucoamylases from Aspergillus niger were investigated in this work, and they had the similar activity in hydrolyzing terminal rhamnosyl residues of steroidal saponin. This project was supported by the National Natural Science Foundation of China (NSFC; 30572333).  相似文献   

20.
This work was to characterize the generation of nitric oxide (NO) in Taxus yunnanensis cells induced by a fungal-derived cerebroside and the signal role of NO in the elicitation of plant defense responses and taxol production. (2S,2′R,3R,3′E,4E,8E)-1-O-β-d-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine at 10 μg/ml induced a rapid and dose-dependent NO production in the Taxus cell culture, reaching a maximum within 5 h of the treatment. The NO donor sodium nitroprusside (SNP) potentiated cerebroside-induced H2O2 production and cell death. Inhibition of nitric oxide synthase activity by phenylene-1,3-bis(ethane-2-isothiourea) dihydrobromide or scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide partially blocked the cerebroside-induced H2O2 production and cell death. Moreover, NO enhanced cerebroside-induced activation of phenylalanine ammonium-lyase and accumulation of taxol in cell cultures. These results are suggestive of a role for NO as a new signal component for activating the cerebroside-induced defense responses and secondary metabolism activities of plant cells. Taxol is a trademark of Bristol-Myers Squibb, Madison, NJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号