首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
We investigated the evolution of a large facial bone, the opercle (OP), in lake populations of the threespine stickleback that were founded by anadromous ancestors, in Cook Inlet, Alaska. Recent studies characterized OP variation among marine and lake populations and mapped a quantitative trait locus with a large influence on OP shape. Using populations from diverse environments and independent evolutionary histories, we examined divergence of OP shape from that of the anadromous ancestor. We report preliminary evidence for divergence between benthic and generalist lake ecotypes, necessitating further investigation. Furthermore, rapid divergence of OP shape has occurred in a lake population that was founded by anadromous stickleback in the 1980s, which is consistent with divergence of other phenotypic traits and with OP diversification in other lake populations. By contrast, there has been limited evolution of OP shape in a second lake population that may have experienced a genetic bottleneck early in its history and lacks genetic variation for OP divergence. Taken together, the results obtained from these two populations are consistent with studies of other stickleback phenotypic traits that implicate ancestral variation in postglacial adaptive radiation of threespine stickleback in fresh water.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 832–844.  相似文献   

2.
A sympatric pair of anadromous and resident freshwater threespine stickleback species (Gasterosteus aculeatus species complex) occurs in Mud Lake in the Matanuska-Susitna Valley, Alaska. The two forms differ in an array of morphological traits, including traits associated with predator defense (e.g., spine lengths) and trophic ecology (e.g., number of gill rakers). Mud Lake is only the third lake reported to have anadromous stickleback (which have a complete row of lateral plates) coexisting with low-plated resident stickleback in the absence of intermediate partially plated fish. Microhabitat and seasonal isolation appear to contribute to reproductive isolation between the two forms.  相似文献   

3.
To understand how new species form and what causes their collapse, we examined how reproductive isolation evolves during the speciation process, considering species pairs with little to extensive divergence, including a recently collapsed pair. We estimated many reproductive barriers in each of five sets of stickleback fish species pairs using our own data and decades of previous work. We found that the types of barriers important early in the speciation process differ from those important late. Two premating barriers—habitat and sexual isolation—evolve early in divergence and remain two of the strongest barriers throughout speciation. Premating isolation evolves before postmating isolation, and extrinsic isolation is far stronger than intrinsic. Completing speciation, however, may require postmating intrinsic incompatibilities. Reverse speciation in one species pair was characterized by significant loss of sexual isolation. We present estimates of barrier strengths before and after collapse of a species pair; such detail regarding the loss of isolation has never before been documented. Additionally, despite significant asymmetries in individual barriers, which can limit speciation, total isolation was essentially symmetric between species. Our study provides important insight into the order of barrier evolution and the relative importance of isolating barriers during speciation and tests fundamental predictions of ecological speciation.  相似文献   

4.
Turnover of sex chromosomes and speciation in fishes   总被引:1,自引:0,他引:1  
Closely related species of fishes often have different sex chromosome systems. Such rapid turnover of sex chromosomes can occur by several mechanisms, including fusions between an existing sex chromosome and an autosome. These fusions can result in a multiple sex chromosome system, where a species has both an ancestral and a neo-sex chromosome. Although this type of multiple sex chromosome system has been found in many fishes, little is known about the mechanisms that select for the formation of neo-sex chromosomes, or the role of neo-sex chromosomes in phenotypic evolution and speciation. The identification of closely related, sympatric species pairs in which one species has a multiple sex chromosome system and the other has a simple sex chromosome system provides an opportunity to study sex chromosome turnover. Recently, we found that a population of threespine stickleback (Gasterosteus aculeatus) from Japan has an X1X2Y multiple sex chromosome system resulting from a fusion between the ancestral Y chromosome and an autosome, while a sympatric threespine stickleback population has a simple XY sex chromosome system. Furthermore, we demonstrated that the neo-X chromosome (X 2) plays an important role in phenotypic divergence and reproductive isolation between these sympatric stickleback species pairs. Here, we review multiple sex chromosome systems in fishes, as well as recent advances in our understanding of the evolutionary role of sex chromosome turnover in stickleback speciation.  相似文献   

5.
Recently, models of sympatric speciation have suggested that assortative mating can develop between sympatric morphs due to divergence in an ecologically important character. For example, in sympatric pairs of threespine stickleback (Gasterosteus aculeatus L.) size-assortative mating seems to be instrumental in reproductive isolation. Here, we examine courtship behaviour and assortative mating of newly described sympatric stickleback morphs in Lake Thingvallavatn, Iceland. We find that the two morphs show strong positive assortative mating. However, the mechanism involved in mate choice does not seem to be as straightforward as in other similar systems of sympatric stickleback morphs and may involve variation in nest type.  相似文献   

6.
Species pairs of threespine stickleback, Gasterosteus aculeatus, co-exist in several lakes in the Strait of Georgia, southwestern British Columbia. One species, ‘benthics’ is robust-bodied and is morphologically and behaviourally specialized for benthivory. The other species, ‘limnetics’ is specialized for planktivory in open-water habitats of the lakes. We examined mitochondrial DNA restriction site variation in benthic and limnetic sticklebacks as well as in solitary freshwater, anadromous (sea-run), and marine populations to test: (i) if benthic and limnetic pairs have evolved only once or multiple times (parallel evolution) and (ii) if the species have evolved sympatrically, or allopatrically from ‘double invasions’ of lakes by ancestral anadromous/marine sticklebacks. Stickleback mtDNA comprised a single clade with a low (mean = 0.40%) degree of sequence divergence among the 77 haplotypes resolved. Most nucleotide diversity (97%) was found within (rather than among) populations of anadromous/marine sticklebacks whereas most diversity (77%) was found among populations in freshwater sticklebacks. Significant differences in haplotype frequencies were found between benthics and limnetics in three of the four species pair lakes examined, but in all cases the pairs within lakes were characterized by unique assemblages of closely related haplotypes. Hierarchical clustering of divergence estimates suggested that comparable species from different lakes have originated independently in all lakes because in no case did comparable species from different lakes cluster together. Divergent species within lakes tended to be more closely related to one another than to species in other lakes and there were two cases were benthics and limnetics within a particular lake were monophyletic. In two of the four two-species lakes, limnetics were less divergent from putative ancestral anadromous/marine stickleback as predicted by the double invasion hypothesis, but in the two other lakes benthics were less divergent. Our data argue strongly that the species pairs have evolved independently in each lake were they now co-exist. Further, in two lakes our data are consistent with the species having evolved by sympatric divergence, but allopatric divergence followed by introgression of mtDNA that has obscured ancestral relationships cannot be discounted completely. Finally, despite remaining uncertainty about the geography of speciation, the species appear to have evolved in the face of gene flow arguing that natural selection acting on trophic ecology has been a major component of ecological speciation in sticklebacks.  相似文献   

7.
When two closely related species migrate to divergent spawning sites, divergent use of spawning habitats can directly reduce heterospecific mating. Furthermore, adaptations to divergent spawning habitats can promote speciation as a by‐product of ecological divergence. Here, we investigated habitat isolation and ecological divergence between two anadromous forms of threespine stickleback (Gasterosteus aculeatus), the Japan Sea and Pacific Ocean forms. In several coastal regions of eastern Hokkaido, Japan, these forms migrate to the same watershed to spawn. Our field surveys in a single watershed revealed that segregation of distinct spawning sites between the two forms was maintained within the watershed across multiple years. These spawning sites diverged in salinity and predator composition. Morphological and physiological divergence between the forms also occurs in the direction predicted by ecological differences between the spawning sites. Our data indicate that migration into divergent spawning habitats can be an important mechanism contributing to speciation and phenotypic divergence in anadromous fishes.  相似文献   

8.
One-allele isolating mechanisms should make the evolution of reproductive isolation between potentially hybridizing taxa easier than two-allele mechanisms, but the generality of one-allele mechanisms in nature has yet to be established. A potentially important one-allele mechanism is sexual imprinting, where the mate preferences of individuals are based on the phenotype of their parents. Here I test the possibility that sexual imprinting promotes reproductive isolation using sympatric species of threespine sticklebacks (Gasterosteus aculeatus). Sympatric species of sticklebacks consist of large benthic species and small limnetic species that are reproductively isolated and adapted to feeding in different environments. I fostered families of F1 hybrids between the species to males of both species. Preferences of these fostered females for males of either type revealed little or no effect of sexual imprinting on assortative mating. However, F1 females showed preferences for males that were similar to themselves in length, suggesting that size-assortative mating may be more important than sexual imprinting for promoting reproductive isolation between species pairs of threespine sticklebacks.  相似文献   

9.
Although similar patterns of phenotypic diversification are often observed in phylogenetically independent lineages, differences in the magnitude and direction of phenotypic divergence have been also observed among independent lineages, even when exposed to the same ecological gradients. The stickleback family is a good model with which to explore the ecological and genetic basis of parallel and nonparallel patterns of phenotypic evolution, because there are a variety of populations and species that are locally adapted to divergent environments. Although the patterns of phenotypic divergence as well as the genetic and ecological mechanisms have been well characterized in threespine sticklebacks, Gasterosteus aculeatus, we know little about the patterns of phenotypic diversification in other stickleback lineages. In eastern Hokkaido, Japan, there are three species of ninespine sticklebacks, Pungitius tymensis and the freshwater type and the brackish‐water type of the P. pungitiusP. sinensis species complex. They utilize divergent habitats along coast–stream gradients of rivers. Here, we investigated genetic, ecological and phenotypic divergence among three species of Japanese ninespine sticklebacks. Divergence in trophic morphology and salinity tolerance occurred in the direction predicted by the patterns observed in threespine sticklebacks. However, the patterns of divergence in armour plate were different from those previously found in threespine sticklebacks. Furthermore, the genetic basis of plate variation may differ from that in threespine sticklebacks. Because threespine sticklebacks are well‐established model for evolutionary research, the sympatric trio of ninespine sticklebacks will be an invaluable resource for ecological and genetic studies on both common and lineage‐specific patterns of phenotypic diversification.  相似文献   

10.
Ecological speciation mechanisms are widely assumed to play an important role in the early stages of divergence between incipient species, and this especially true of fishes. In the present study, we tested explicitly for post‐zygotic barriers to gene flow between a sympatric, recently diverged lamprey species pair that likely arose through ecological divergence. Experimental in vitro hybridization between anadromous parasitic Lampetra fluviatilis and resident nonparasitic Lampetra planeri resulted in a high proportion of embryos capable of attaining the burrowing pro‐larval stage, strongly indicating no post‐zygotic barriers to gene flow between these species. A sympatric, locally‐adapted resident parasitic form of L. fluviatilis was also found to successfully hybridize with both members of this species pair. The consequences of these findings are discussed in the context of lamprey speciation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 378–383.  相似文献   

11.
12.
Three-spined sticklebacks (Gasterosteus aculeatus) are a powerful evolutionary model system due to the rapid and repeated phenotypic divergence of freshwater forms from a marine ancestor throughout the Northern Hemisphere. Many of these recently derived populations are found in overlapping habitats, yet are reproductively isolated from each other. This scenario provides excellent opportunities to investigate the mechanisms driving speciation in natural populations. Genetically distinguishing between such recently derived species, however, can create difficulties in exploring the ecological and genetic factors defining species boundaries, an essential component to our understanding of speciation. We overcame these limitations and increased the power of analyses by selecting highly discriminatory markers from the battery of genetic markers now available. Using species diagnostic molecular profiles, we quantified levels of hybridization and introgression within three sympatric species pairs of three-spined stickleback. Sticklebacks within Priest and Paxton lakes exhibit a low level of natural hybridization and provide support for the role of reinforcement in maintaining distinct species in sympatry. In contrast, our study provides further evidence for a continued breakdown of the Enos Lake species pair into a hybrid swarm, with biased introgression of the 'limnetic' species into that of the 'benthic'; a situation that highlights the delicate balance between persistence and breakdown of reproductive barriers between young species. A similar strategy utilizing the stickleback microsatellite resource can also be applied to answer an array of biological questions in other species' pair systems in this geographically widespread and phenotypically diverse model organism.  相似文献   

13.
Ecological speciation is the evolution of reproductive isolation as a direct or indirect consequence of divergent natural selection. Reduced performance of hybrids in nature is thought to be an important process by which natural selection can favor the evolution of assortative mating and drive speciation. Benthic and limnetic sympatric species of threespine stickleback (Gasterosteus aculeatus) are adapted to alternative trophic niches (bottom browsing vs. open water planktivory, respectively) and reduced feeding performance of hybrids is thought to have contributed to the evolution of reproductive isolation. We tested this “hybrid‐disadvantage hypothesis” by inferring growth rates from otoliths sampled from wild, free‐ranging benthic, limnetic, and hybrid sticklebacks in two lakes. There were significant differences in growth rate between lakes, life‐history stages, and among years (maximum P = 0.02), as well as interactions between most factors, but not between hybrid and parental species sticklebacks in most comparisons. Our results provide little evidence of a growth disadvantage in hybrid sticklebacks when free‐ranging in nature. Although trophic ecology per se may contribute less to ecological speciation than envisioned, it may act in concert with other aspects of stickleback biology, such as interactions with parasites, predators, competitors, and/or sexual selection, to present strong multifarious selection against hybrids.  相似文献   

14.
Experimental work has provided evidence for extrinsic post-zygotic isolation, a phenomenon unique to ecological speciation. The role that ecological components to reduced hybrid fitness play in promoting speciation and maintaining species integrity in the wild, however, is not as well understood. We addressed this problem by testing for selection against naturally occurring hybrids in two sympatric species pairs of benthic and limnetic threespine sticklebacks (Gasterosteus aculeatus). If post-zygotic isolation is a significant reproductive barrier, the relative frequency of hybrids within a population should decline significantly across the life-cycle. Such a trend in a natural population would give independent support to experimental evidence for extrinsic, rather than intrinsic, post-zygotic isolation in this system. Indeed, tracing mean individual hybridity (genetic intermediateness) across three life-history stages spanning four generations revealed just such a decline. This provides compelling evidence that extrinsic selection plays an important role in maintaining species divergence and supports a role for ecological speciation in sticklebacks.  相似文献   

15.
By studying systems in their earliest stages of differentiation, we can learn about the evolutionary forces acting within and among populations and how those forces could contribute to reproductive isolation. Such an understanding would help us to better discern and predict how selection leads to the maintenance of multiple morphs within a species, rather than speciation. The postglacial adaptive radiation of the threespine stickleback (Gasterosteus aculeatus) is one of the best‐studied cases of evolutionary diversification and rapid, repeated speciation. Following deglaciation, marine stickleback have continually invaded freshwater habitats across the northern hemisphere and established resident populations that diverged innumerable times from their oceanic ancestors. Independent freshwater colonization events have yielded broadly parallel patterns of morphological differences in freshwater and marine stickleback. However, there is also much phenotypic diversity within and among freshwater populations. We studied a lesser‐known freshwater “species pair” found in southwest Washington, where male stickleback in numerous locations have lost the ancestral red sexual signal and instead develop black nuptial coloration. We measured phenotypic variation in a suite of traits across sites where red and black stickleback do not overlap in distribution and at one site where they historically co‐occurred. We found substantial phenotypic divergence between red and black morphs in noncolor traits including shape and lateral plating, and additionally find evidence that supports the hypothesis of sensory drive as the mechanism responsible for the evolutionary switch in color from red to black. A newly described third “mixed” morph in Connor Creek, Washington, differs in head shape and size from the red and black morphs, and we suggest that their characteristics are most consistent with hybridization between anadromous and freshwater stickleback. These results lay the foundation for future investigation of the underlying genetic basis of this phenotypic divergence as well as the evolutionary processes that may drive, maintain, or limit divergence among morphs.  相似文献   

16.
The evolution of reproductive isolation (RI) is a critical step shaping progress towards speciation. In the context of ecological speciation, a critical question is the extent to which specific reproductive barriers important to RI evolve rapidly and predictably in response to environmental differences. Only reproductive barriers with these properties (importance, rapidity, predictability) will drive the diversification of species that are cohesively structured by environment type. One candidate barrier that might exhibit such properties is allochrony, whereby populations breed at different times. We studied six independent lake–stream population pairs of threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) that are known from genetic studies to show RI. However, the specific reproductive barriers driving this RI have proven elusive, leading to a ‘conundrum of missing reproductive isolation’. We here show that breeding times differ among some of the populations, but not in a consistent manner between lakes and streams. Moreover, the timing differences between lake and stream populations within each pair could account for only a small proportion of total RI measured with neutral genetic markers. Allochrony cannot solve the conundrum of missing reproductive isolation in lake–stream stickleback.  相似文献   

17.
Icelandic threespine sticklebacks show parallel sympatric morphological differences related to different substrate habitats in four Icelandic lakes. The level of morphological diversification varies among the lakes, ranging from a population with a wide morphological distribution to a population with clear resource morphs, where morphological diversification was reflected in diet differences. These differences in morphological divergence are closely related to the differences in the ecological surroundings of each population. This appears to be resource polymorphism, which may lead to population differentiation and speciation. Trophically related sexual dimorphism was also common in these sticklebacks, which is possibly the result of sexual selection or habitat segregation by the sexes. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 247–257.  相似文献   

18.
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.  相似文献   

19.
The ecological theory of adaptive radiation states that differences in ecological circumstances among local populations are the cause of divergence that leads to speciation. The role of parasites in contributing to divergence has seldom been considered, despite their ubiquity and known selective effects. The potential for parasites to contribute to divergence between closely related taxa was examined by quantifying the variation in parasite burdens between sympatric three-spined stickleback species ( Gasterosteus aculeatus complex) in two lakes in coastal British Columbia, Canada. In doing so the relative importance of geographical differences between lakes and trophic or microhabitat differences between species within lakes were evaluated. The entire metazoan parasite burdens of a total of 255 limnetic and benthic sticklebacks in Paxton and Priest lakes were assayed over five time points between spring and autumn. Despite their sympatric distributions, there were large differences in parasite burdens between benthic and limnetic sticklebacks within lakes and these were consistent across both lakes. In particular, limnetics suffered greater burdens of the parasites Schistocephalus solidus and Diplostomum scudderi and benthics had much higher burdens of parasitic glochidia (mollusc larvae). Parasite burdens also differed quantitatively between lakes, but in general such differences were less pronounced than those between the stickleback species. The documented differences in parasite burdens between stickleback species have potential to contribute to divergent selection on life history, immunological and secondary sexual characters that could contribute to reproductive isolation between the species.  相似文献   

20.
In the past decade, there has been a new effort to understand the ecology that drives population divergence and speciation. It is well established in theory that speciation is most likely to occur when a trait that is under divergent natural selection in different populations is also used in mate choice. Such traits have been dubbed 'magic traits' ( Gavrilets, 2004 ) and, although there appears to be good evidence that they exist, the ecological mechanisms that underlie their divergence are not well understood. Size at maturity in three-spined sticklebacks is an archetypal example of a magic trait. The present study documents for the first time that differences in body size at maturity in sympatric species pairs of lacustrine three-spined sticklebacks in British Columbia, Canada, are caused by differences in age at maturity. It is also shown that there are differences between the sympatric species in the patterns of infection with a virulent cestode, Schistocephalus solidus . Although the evidence is circumstantial, these differences in infection are consistent with the hypothesis that they have contributed to the observed divergence in age and size at maturity in these populations.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 425–433.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号