首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper introduces a theme issue presenting the latest developments in research on the impacts of sociality on health and fitness. The articles that follow cover research on societies ranging from insects to humans. Variation in measures of fitness (i.e. survival and reproduction) has been linked to various aspects of sociality in humans and animals alike, and variability in individual health and condition has been recognized as a key mediator of these relationships. Viewed from a broad evolutionary perspective, the evolutionary transitions from a solitary lifestyle to group living have resulted in several new health-related costs and benefits of sociality. Social transmission of parasites within groups represents a major cost of group living, but some behavioural mechanisms, such as grooming, have evolved repeatedly to reduce this cost. Group living also has created novel costs in terms of altered susceptibility to infectious and non-infectious disease as a result of the unavoidable physiological consequences of social competition and integration, which are partly alleviated by social buffering in some vertebrates. Here, we define the relevant aspects of sociality, summarize their health-related costs and benefits, and discuss possible fitness measures in different study systems. Given the pervasive effects of social factors on health and fitness, we propose a synthesis of existing conceptual approaches in disease ecology, ecological immunology and behavioural neurosciences by adding sociality as a key factor, with the goal to generate a broader framework for organismal integration of health-related research.  相似文献   

2.
Cooperative breeders serve as a model to study the evolution of cooperation, where costs and benefits of helping are typically scrutinized at the level of group membership. However, cooperation is often observed in multi-level social organizations involving interactions among individuals at various levels. Here, we argue that a full understanding of the adaptive value of cooperation and the evolution of complex social organization requires identifying the effect of different levels of social organization on direct and indirect fitness components. Our long-term field data show that in the cooperatively breeding, colonial cichlid fish Neolamprologus pulcher, both large group size and high colony density significantly raised group persistence. Neither group size nor density affected survival at the individual level, but they had interactive effects on reproductive output; large group size raised productivity when local population density was low, whereas in contrast, small groups were more productive at high densities. Fitness estimates of individually marked fish revealed indirect fitness benefits associated with staying in large groups. Inclusive fitness, however, was not significantly affected by group size, because the direct fitness component was not increased in larger groups. Together, our findings highlight that the reproductive output of groups may be affected in opposite directions by different levels of sociality, and that complex forms of sociality and costly cooperation may evolve in the absence of large indirect fitness benefits and the influence of kin selection.  相似文献   

3.
In the late 1990s and early 2000s it was recognized that behavioral ecologists needed to study the sociality of caviomorph rodents (New World hystricognaths) before generalizations about rodent sociality could be made. Researchers identified specific problems facing individuals interested in caviomorph sociality, including a lack of information on the proximate mechanisms of sociality, role of social environment in development, and geographical or intraspecific variation in social systems. Since then researchers have described the social systems of many previously understudied species, including some with broad geographical ranges. Researchers have done a good job of determining the role of social environments in development and identifying the costs and benefits of social living. However, relatively little is known about the proximate mechanisms of social behavior and fitness consequences, limiting progress toward the development of integrative (evolutionary-mechanistic) models for sociality. To develop integrative models behavioral ecologists studying caviomorph rodents must generate information on the fitness consequences of different types of social organization, brain mechanisms, and endocrine substrates of sociality. We review our current understanding and future directions for research in these conceptual areas. A greater understanding of disease ecology, particularly in species carrying Old World parasites, is needed before we can identify potential links between social phenotypes, mechanism, and fitness.  相似文献   

4.
In spite of its intrinsic evolutionary instability, altruistic behavior in social groups is widespread in nature, spanning from organisms endowed with complex cognitive abilities to microbial populations. In this study, we show that if social individuals have an enhanced tendency to form groups and fitness increases with group cohesion, sociality can evolve and be maintained in the absence of actively assortative mechanisms such as kin recognition or nepotism toward other carriers of the social gene. When explicitly taken into account in a game‐theoretical framework, the process of group formation qualitatively changes the evolutionary dynamics with respect to games played in groups of constant size and equal grouping tendencies. The evolutionary consequences of the rules underpinning the group size distribution are discussed for a simple model of microbial aggregation by differential attachment, indicating a way to the evolution of sociality bereft of peer recognition.  相似文献   

5.
1. Understanding how variation in fitness relates to variation in group living remains critical to determine whether this major aspect of social behaviour is currently adaptive. 2. Available evidence in social mammals aimed to examine this issue remains controversial. Studies show positive (i.e. potentially adaptive), neutral or even negative fitness effects of group living. 3. Attempts to explain this variation rely on intrinsic and extrinsic factors to social groups. Thus, relatively more positive fitness effects are predicted in singularly breeding as opposed to plural breeding species. Fitness effects of sociality in turn may depend on ecological conditions (i.e. extrinsic factors) that influence associated benefits and costs. 4. We used meta-analytic tools to review how breeding strategy or ecological conditions influence the effect size associated with direct fitness-sociality relationships reported in the mammalian literature. Additionally, we determined how taxonomic affiliation of species studied, different fitness and sociality measures used, and major climatic conditions of study sites explained any variation in direct fitness effect size. 5. We found group living had modest, yet positive effects on direct fitness. This generally adaptive scenario was contingent not only upon breeding strategy and climate of study sites, but also on fitness measures examined. Thus, positive and significant effects characterized singular as opposed to plural breeding strategies. 6. We found more positive fitness effects on studies conducted in tropical as opposed to temperate or arid climates. More positive and significant effects were noted on studies that relied on group fecundity, male fecundity and offspring survival as measures of fitness. 7. To conclude, direct fitness consequences of mammalian group living are driven by interspecific differences in breeding strategy and climate conditions. Other factors not examined in this study, namely individual variation in direct and indirect fitness benefits and potential interactions between social and ecological conditions, may be important and require further studies.  相似文献   

6.
When the consequences of sociality differ depending on the state of individual animals and the experienced environment, individuals may benefit from altering their social behaviours in a context‐dependent manner. Thus, to fully address the hypotheses about the role of social associations it is imperative to consider the multidimensional nature of sociality by explicitly examining social associations across multiple scales and contexts. We simultaneously recorded > 8000 associations from 85% of breeding individuals from a colony of Australasian gannets (Morus serrator) over a 2‐week period, and examined gregariousness across four foraging states using multilayer social network analysis. We found that social associations varied in a context‐dependent manner, highlighting that social associations are most prevalent during foraging (local enhancement) and in regions expected to provide clustered resources. We also provide evidence of individual consistency in gregariousness, but flexibility in social associates, demonstrating that individuals can adjust their social behaviours to match experienced conditions.  相似文献   

7.
Group‐living animals often maintain a few very close affiliative relationships—social bonds—that can buffer them against many of the inevitable costs of gregariousness. Kinship plays a central role in the development of such social bonds. The bulk of research on kin biases in sociality has focused on philopatric females, who typically live in deeply kin‐structured systems, with matrilineal dominance rank inheritance and life‐long familiarity between kin. Closely related males, in contrast, are usually not close in rank or familiar, which offers the opportunity to test the importance of kinship per se in the formation of social bonds. So far, however, kin biases in male social bonding have only been tested in philopatric males, where familiarity remains a confounding factor. Here, we studied bonds between male Assamese macaques, a species in which males disperse from their natal groups and in which male bonds are known to affect fitness. Combining extensive behavioural data on 43 adult males over a 10‐year period with DNA microsatellite relatedness analyses, we find that postdispersal males form stronger relationships with the few close kin available in the group than with the average nonkin. However, males form the majority of their bonds with nonkin and may choose nonkin over available close kin to bond with. Our results show that kinship facilitates bond formation, but is not a prerequisite for it, which suggests that strong bonds are not restricted to kin in male mammals and that animals cooperate for both direct and indirect fitness benefits.  相似文献   

8.
The evolution of cooperation requires benefits of group living to exceed costs. Hence, some components of fitness are expected to increase with increasing group size, whereas others may decrease because of competition among group members. The social spiders provide an excellent system to investigate the costs and benefits of group living: they occur in groups of various sizes and individuals are relatively short-lived, therefore life history traits and Lifetime Reproductive Success (LRS) can be estimated as a function of group size. Sociality in spiders has originated repeatedly in phylogenetically distant families and appears to be accompanied by a transition to a system of continuous intra-colony mating and extreme inbreeding. The benefits of group living in such systems should therefore be substantial. We investigated the effect of group size on fitness components of reproduction and survival in the social spider Stegodyphus dumicola in two populations in Namibia. In both populations, the major benefit of group living was improved survival of colonies and late-instar juveniles with increasing colony size. By contrast, female fecundity, female body size and early juvenile survival decreased with increasing group size. Mean individual fitness, estimated as LRS and calculated from five components of reproduction and survival, was maximized for intermediate- to large-sized colonies. Group living in these spiders thus entails a net reproductive cost, presumably because of an increase in intra-colony competition with group size. This cost is traded off against survival benefits at the colony level, which appear to be the major factor favouring group living. In the field, many colonies occur at smaller size than expected from the fitness curve, suggesting ecological or life history constraints on colony persistence which results in a transient population of relatively small colonies.  相似文献   

9.
A fundamental question concerning group-living species is what factors influence the evolution of sociality. Although several studies link adult social bonds to fitness, social patterns and relationships are often formed early in life and are also likely to have fitness consequences, particularly in species with lengthy developmental periods, extensive social learning, and early social bond-formation. In a longitudinal study of bottlenose dolphins (Tursiops sp.), calf social network structure, specifically the metric eigenvector centrality, predicted juvenile survival in males. Additionally, male calves that died post-weaning had stronger ties to juvenile males than surviving male calves, suggesting that juvenile males impose fitness costs on their younger counterparts. Our study indicates that selection is acting on social traits early in life and highlights the need to examine the costs and benefits of social bonds during formative life history stages.  相似文献   

10.
Extreme temperatures impose energy costs on endotherms through thermoregulation and different adaptations help individuals to cope with these conditions. In social species, communal roosting and huddling are thought to decrease the energetic requirement of thermoregulation under low temperatures. This is likely to represent an important mechanism by which individuals save energy during the coldest parts of the year and hence to represent a non‐breeding benefit of sociality. Here, we investigate the potential thermoregulatory benefits of group living in roosting groups of sociable weavers Philetairus socius, a colonial cooperatively breeding passerine that builds communally a massive nest structure with several independent chambers wherein individuals breed and roost throughout the year. To investigate the benefits of sociality during the non‐breeding season, we studied the thermal environment during roosting in relation to group size. In addition, to understand the link between non‐breeding and breeding sociality in this species we studied group size stability between the pre‐breeding and breeding periods. As expected, we found that the nest chamber's night‐time temperature is strongly related to the number of birds roosting together, especially during cold nights. Specifically, birds in larger groups spent less time below the critical thermal minimum temperature (i.e. the temperature below which energy expenditure increases substantially). They were less exposed to external temperature variations. We also found a positive relationship between the number of birds roosting during winter and the breeding group size, indicating breeding group size predictability. In cooperative breeders such as the sociable weaver, the costs and benefits of sociality are usually studied during the breeding period. This study shows that a better understanding of non‐breeding benefits of group membership and group dynamics between the non‐breeding and breeding periods are necessary for a comprehensive understanding of the benefits of sociality.  相似文献   

11.
Consistent individual differences in behavioural types may not only cause variation in life-history decisions, but may also affect the choice of social partners and sociality in general. Here, we tested whether and how behavioural type influences the establishment of social ties using the cooperatively breeding cichlid, Neolamprologus pulcher. In a habitat saturation experiment with individuals pre-tested for behavioural type, we first analysed whether behavioural type affected the likelihood of settlement (i.e. social status), group sizes, and the types of dominant and subordinate individuals accepted as group members. Corrected for effects of body size and sex, the behavioural type did not affect settlement. However, bold dominant males only accepted smaller females, and grouped with bold subordinates, while shy dominant males accepted larger females than themselves, and grouped with shy subordinates. Second, we analysed the relationships between behavioural type and the aggressiveness or affiliation social network. Behavioural type significantly affected the number and quality of connections within the two networks. We show that behavioural types affect group composition, social networks and status achieved, in interaction with body size. Thus, the interactions within groups may depend not only on age, size and sex, but also on the behavioural type of the individuals involved.  相似文献   

12.

Background  

Cooperative hunting and foraging in spiders is rare and prone to cheating such that the actions of selfish individuals negatively affect the whole group. The resulting social dilemma may be mitigated by kin selection since related individuals lose indirect fitness benefits by acting selfishly. Indeed, cooperation with genetic kin reduces the disadvantages of within-group competition in the subsocial spider Stegodyphus lineatus, supporting the hypothesis that high relatedness is an important pre-adaptation in the transition to sociality in spiders. In this study we examined the consequences of group size and relatedness on cooperative feeding in the subsocial spider S. tentoriicola, a species suggested to be at the transition to permanent sociality.  相似文献   

13.
The diversity of extant carnivores provides valuable opportunities for comparative research to illuminate general patterns of mammalian social evolution. Recent field studies on mongooses (Herpestidae), in particular, have generated detailed behavioural and demographic data allowing tests of assumptions and predictions of theories of social evolution. The first studies of the social systems of their closest relatives, the Malagasy Eupleridae, also have been initiated. The literature on mongooses was last reviewed over 25 years ago. In this review, we summarise the current state of knowledge on the social organisation, mating systems and social structure (especially competition and cooperation) of the two mongoose families. Our second aim is to evaluate the contributions of these studies to a better understanding of mammalian social evolution in general. Based on published reports or anecdotal information, we can classify 16 of the 34 species of Herpestidae as solitary and nine as group‐living; there are insufficient data available for the remainder. There is a strong phylogenetic signal of sociality with permanent complex groups being limited to the genera Crossarchus, Helogale, Liberiictis, Mungos, and Suricata. Our review also indicates that studies of solitary and social mongooses have been conducted within different theoretical frameworks: whereas solitary species and transitions to gregariousness have been mainly investigated in relation to ecological determinants, the study of social patterns of highly social mongooses has instead been based on reproductive skew theory. In some group‐living species, group size and composition were found to determine reproductive competition and cooperative breeding through group augmentation. Infanticide risk and inbreeding avoidance connect social organisation and social structure with reproductive tactics and life histories, but their specific impact on mongoose sociality is still difficult to evaluate. However, the level of reproductive skew in social mongooses is not only determined by the costs and benefits of suppressing each other's breeding attempts, but also influenced by resource abundance. Thus, dispersal, as a consequence of eviction, is also linked to the costs of co‐breeding in the context of food competition. By linking these facts, we show that the socio‐ecological model and reproductive skew theory share some determinants of social patterns. We also conclude that due to their long bio‐geographical isolation and divergent selection pressures, future studies of the social systems of the Eupleridae will be of great value for the elucidation of general patterns in carnivore social evolution.  相似文献   

14.
Both theoretical and laboratory research suggests that many prey animals should live in a solitary, dispersed distribution unless they lack repellent defences such as toxins, venoms and stings. Chemically defended prey may, by contrast, benefit substantially from aggregation because spatial localization may cause rapid predator satiation on prey toxins, protecting many individuals from attack. If repellent defences promote aggregation of prey, they also provide opportunities for new social interactions; hence the consequences of defence may be far reaching for the behavioural biology of the animal species. There is an absence of field data to support predictions about the relative costs and benefits of aggregation. We show here for the first time using wild predators that edible, undefended artificial prey do indeed suffer heightened death rates if they are aggregated; whereas chemically defended prey may benefit substantially by grouping. We argue that since many chemical defences are costly to prey, aggregation may be favoured because it makes expensive defences much more effective, and perhaps allows grouped individuals to invest less in chemical defences.  相似文献   

15.
Recent work has shown that animals frequently use social information from individuals of their own species as well as from other species; however, the ecological and evolutionary consequences of this social information use remain poorly understood. Additionally, information users may be selective in their social information use, deciding from whom and how to use information, but this has been overlooked in an interspecific context. In particular, the intentional decision to reject a behaviour observed via social information has received less attention, although recent work has indicated its presence in various taxa. Based on existing literature, we explore in which circumstances selective interspecific information use may lead to different ecological and coevolutionary outcomes between two species, such as explaining observed co-occurrences of putative competitors. The initial ecological differences and the balance between the costs of competition and the benefits of social information use potentially determine whether selection may lead to trait divergence, convergence or coevolutionary arms race between two species. We propose that selective social information use, including adoption and rejection of behaviours, may have far-reaching fitness consequences, potentially leading to community-level eco-evolutionary outcomes. We argue that these consequences of selective interspecific information use may be much more widespread than has thus far been considered.  相似文献   

16.
Explaining the evolution of helping behaviour in the eusocial insects where nonreproductive (“worker”) individuals help raise the offspring of other individuals (“queens”) remains one of the most perplexing phenomena in the natural world. Polistes paper wasps are popular study models, as workers retain the ability to reproduce: such totipotency is likely representative of the early stages of social evolution. Polistes is thought to have originated in the tropics, where seasonal constraints on reproductive options are weak and social groups are effectively perennial. Yet, most Polistes research has focused on nontropical species, where seasonality causes family groups to disperse; cofoundresses forming new nests the following spring are often unrelated, leading to the suggestion that direct fitness through nest inheritance is key in the evolution of helping behaviour. Here, we present the first comprehensive genetic study of social structure across the perennial nesting cycle of a tropical PolistesPolistes canadensis. Using both microsatellites and newly developed single nucleotide polymorphism markers, we show that adult cofoundresses are highly related and that brood production is monopolized by a single female across the nesting cycle. Nonreproductive cofoundresses in tropical Polistes therefore have the potential to gain high indirect fitness benefits as helpers from the outset of group formation, and these benefits persist through the nesting cycle. Direct fitness may have been less important in the origin of Polistes sociality than previously suggested. These findings stress the importance of studying a range of species with diverse life history and ecologies when considering the evolution of reproductive strategies.  相似文献   

17.
Kinship and sociality in coastal river otters: are they related?   总被引:1,自引:0,他引:1  
Previous studies of coastal river otters (Lontra canadensis)in Prince William Sound, Alaska, USA, documented atypical socialorganization for mammals. Social groups were composed largelyof males, but some males remained solitary year-round and mostfemales were asocial. Because, in carnivores, groups are usuallycomposed of highly related individuals but group living alsoprovides advantages unrelated to kinship, we concurrently evaluatedthe role of relatedness and ecological benefits in socialityamong coastal river otters. By using DNA microsatellite analysisand radiotelemetry, we were able to reject the hypothesis thatsocial groups of otters were kin based. In addition, we foundno indication of kin avoidance, as would be expected from lowdispersal and high local competition. Sociality conferred noreproductive benefits or costs to otters; number of offspringand number of relatives in the population did not differ betweensocial and solitary animals. Solitary males were not older orlarger than were social males, and there was no relation betweenmale size and number of offspring, indicating that sexual selectiondid not mask a potential relation between sociality and reproductivesuccess. Among coastal river otters in this region, socialitycould be explained by the benefits obtained from cooperativeforaging on high-quality schooling pelagic fishes. Such benefitsdid not require association with kin, resulting in no selectionpressure for kin-based groups. The prediction that the degreeof sociality in the population will fluctuate relative to theabundance of schooling pelagic fishes merits further investigation.  相似文献   

18.
Hamilton''s rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton''s rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton''s rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton''s rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton''s rule regarding conditions for social evolution and their causes.  相似文献   

19.
A long‐standing goal for biologists and social scientists is to understand the factors that lead to the evolution and maintenance of co‐operative behaviour between conspecifics. To that end, the fruit fly, Drosophila melanogaster, is becoming an increasingly popular model species to study sociality; however, most of the research to date has focused on adult behaviours. In this study, we set out to examine group‐feeding behaviour by larvae and to determine whether the degree of relatedness between individuals mediates the expression co‐operation. In a series of assays, we manipulated the average degree of relatedness in groups of third‐instar larvae that were faced with resource scarcity, and measured the size, frequency and composition of feeding clusters, as well as the fitness benefits associated with co‐operation. Our results suggest that larval D. melanogaster are capable of kin recognition (something that has not been previously described in this species), as clusters were more numerous, larger and involved more larvae, when more closely related kin were present in the social environment. These findings are discussed in the context of the correlated fitness‐associated benefits of co‐operation, the potential mechanisms by which individuals may recognize kin, and how that kinship may play an important role in facilitating the manifestation of this co‐operative behaviour.  相似文献   

20.
The recent growth of research on animal personality could provide new insights into our understanding of sociality and the structure of animal groups. Although simple assays of the type commonly used to study animal personality have been shown to correlate with social aggressiveness in some bird species, conflicting empirical results do not yet make it clear when such assays, typically using isolated individuals, predict behaviour within social groups. We measured aggressiveness in groups of a very gregarious species, the common waxbill (Estrilda astrild), and performed five commonly used behavioural assays on the same individuals: tonic immobility, mirror test, novel object test, open‐field test and a variant of the latter in an enriched environment. We found that larger individuals were more dominant and that differences in aggressiveness were repeatable. None of the traditional behavioural assays were related to aggressiveness or dominance. Standard personality assays may fail to capture individual differences relevant to predict social behaviour, and we discuss biological and methodological explanations for these results, such as social behaviour being in part an emergent property of groups rather than an intrinsic property of individuals, or gregarious species being particularly sensitive to the conditions of standard personality assays that test individuals alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号