首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J T Gray  D W Celander  C M Price  T R Cech 《Cell》1991,67(4):807-814
Telomeres of Oxytricha nova macronuclear chromosomes consist of a repeated T4G4 sequence, single-stranded at the 3' terminus, bound by a heterodimeric protein. The cloning of genes for the two polypeptides and their separate expression in E. coli have enabled evaluation of their individual contributions to DNA binding. The 56 kd alpha subunit binds single-stranded DNA by itself, one polypeptide per T4G4 block; multiple subunits can coat a (T4G4)n multimer. The derived amino acid sequence of alpha does not reveal any known DNA-binding motif, so it appears to represent a novel type of DNA-binding protein. The previously cloned 41 kd beta subunit does not by itself protect DNA from methylation, but is required along with alpha to recreate the pattern of methylation protection indicative of telomeres in vivo. The unusual ability of the protein to engage in two different interactions with the same telomeric DNA sequence might provide the versatility necessary for diverse telomere functions.  相似文献   

2.
Recognition and elongation of telomeres by telomerase   总被引:9,自引:0,他引:9  
Telomeres stabilize chromosomal ends and allow their complete replication in vivo. In diverse eukaryotes, the essential telomeric DNA sequence consists of variable numbers of tandem repeats of simple, G + C rich sequences, with a strong strand bias of G residues on the strand oriented 5' to 3' toward the chromosomal terminus. This strand forms a protruding 3' over-hang at the chromosomal terminus in three different eukaryotes analyzed. Analysis of yeast and protozoan telomeres showed that telomeres are dynamic structures in vivo, being acted on by shortening and lengthening activities. We previously identified and partially purified an enzymatic activity, telomere terminal transferase, or telomerase, from the ciliate Tetrahymena. Telomerase is a ribonucleoprotein enzyme with essential RNA and protein components. This activity adds repeats of the Tetrahymena telomeric sequence, TTGGGG, onto the 3' end of a single-stranded DNA primer consisting of a few repeats of the G-rich strand of known telomeric, and telomere-like, sequences. The shortest oligonucleotide active as a primer was the decamer G4T2G4. Structural analysis of synthetic DNA oligonucleotides that are active as primers showed that they all formed discrete intramolecular foldback structures at temperatures below 40 degrees C. Addition of TTGGGG repeats occurs one nucleotide at a time by de novo synthesis, which is not templated by the DNA primer. Up to 8000 nucleotides of G4T2 repeats were added to the primer in vitro. We discuss the implications of this finding for regulation of telomerase in vivo and a model for telomere elongation by telomerase.  相似文献   

3.
Telomerase is a ribonucleoprotein enzyme that adds telomeric sequence repeats to the ends of linear chromosomes. In vitro, telomerase has been observed to add repeats to a DNA oligonucleotide primer in a processive manner, leading to the postulation of a DNA anchor site separate from the catalytic site of the enzyme. We have substituted photoreactive 5-iododeoxypyrimidines into the DNA oligonucleotide primer d(T4G4T4G4T4G2) and, upon irradiation, obtained cross-links with the anchor site of telomerase from Euplotes aediculatus nuclear extract. No cross-linking occurred with a primer having the same 5' end and a nontelomeric 3' end. These cross-links were shown to be between the DNA primer and (i) a protein moiety of approximately 130 kDa and (ii) U51-U52 of the telomerase RNA. The cross-linked primer could be extended by telomerase in the presence of [alpha-32P]dGTP, thus indicating that the 3' end was bound in the enzyme active site. The locations of the cross-links within the single-stranded primers were 20 to 22 nucleotides upstream of the 3' end, providing a measure of the length of DNA required to span the telomerase active and anchor sites. When the single-stranded primers are aligned with the G-rich strand of a Euplotes telomere, the cross-linked nucleotides correspond to the duplex region. Consistent with this finding, a cross-link to telomerase was obtained by substitution of 5-iododeoxycytidine into the CA strand of the duplex region of telomere analogs. We conclude that the anchor site in the approximately 130-kDa protein can bind duplex as well as single-stranded DNA, which may be critical for its function at chromosome ends. Quantitation of the processivity with single-stranded DNA primers and double-stranded primers with 3' tails showed that only 60% of the primer remains bound after each repeat addition.  相似文献   

4.
R Giraldo  D Rhodes 《The EMBO journal》1994,13(10):2411-2420
The protein RAP1 is essential for the maintenance of the telomeres of Saccharomyces cerevisiae and binds in vitro to multiple sites found within the TG1-3 telomeric repeats. We show here that, in addition to its known binding activity for double-stranded DNA, RAP1 binds sequence-specifically to the GT-strands. This indicates that RAP1 is the protein that binds to the telomeric terminal GT-tails. Furthermore, we have found that RAP1 binds to and promotes the formation of G-tetrads, i.e. DNA quadruplexes, in GT-strand oligonucleotides at nanomolar concentrations. The formation of DNA quadruplexes appears to involve the intermolecular association of GT-strands. The minimal DNA-binding domain of RAP1 (DBD) binds only to double-stranded DNA, so that the novel DNA-binding activity we have found involves regions of the protein located outside of the DBD. The finding that a telomeric protein promotes the formation of G-tetrads argues for the use of DNA quadruplexes in telomere association.  相似文献   

5.
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2.  相似文献   

6.
Repressor Activator Protein 1 (RAP1) of Saccharomyces cerevisiae is an abundant nuclear protein implicated in telomere length maintenance, transactivation, and in the establishment of silent chromatin domains. The RAP1 binding site 5' of the yeast HIS4 gene is also a region of hyperrecombination in meiosis. We report here that as RAP1 binds its recognition consensus, it appears to untwist double-stranded DNA, which we detect as the introduction of a negative supercoil in circularization assays. Coincident with the RAP1-dependent untwisting, we observe stimulation of the association of a single-stranded yeast telomeric sequence with its homologous double-stranded sequence in a supercoiled plasmid. This unusual distortion of the DNA double helix by RAP1 may contribute to the RAP1-dependent enhancement of recombination rates and promote non-duplex strand interactions at telomeres.  相似文献   

7.
Human POT1 facilitates telomere elongation by telomerase   总被引:39,自引:0,他引:39  
Mammalian telomeric DNA is mostly composed of double-stranded 5'-TTAGGG-3' repeats and ends with a single-stranded 3' overhang. Telomeric proteins stabilize the telomere by protecting the overhang from degradation or by remodeling the telomere into a T loop structure. Telomerase is a ribonucleoprotein that synthesizes new telomeric DNA. In budding yeast, other proteins, such as Cdc13p, that may help maintain the telomere end by regulating the recruitment or local activity of telomerase have been identified. Pot1 is a single-stranded telomeric DNA binding protein first identified in fission yeast, where it was shown to protect telomeres from degradation [10]. Human POT1 (hPOT1) protein is known to bind specifically to the G-rich telomere strand. We now show that hPOT1 can act as a telomerase-dependent, positive regulator of telomere length. Three splice variants of hPOT1 were overexpressed in a telomerase-positive human cell line. All three variants lengthened telomeres, and splice variant 1 was the most effective. hPOT1 was unable to lengthen the telomeres of telomerase-negative cells unless telomerase activity was induced. These data suggest that a normal function of hPOT1 is to facilitate telomere elongation by telomerase.  相似文献   

8.
Telomeres are the specialized structures at the end of linear chromosomes and terminate with a single-stranded 3' overhang of the G-rich strand. The primary role of telomeres is to protect chromosome ends from recombination and fusion and from being recognized as broken DNA ends. This protective function can be achieved through association with specific telomere-binding proteins. Although proteins that bind single-stranded G-rich overhang regulate telomere length and telomerase activity in mammals and lower eukaryotes, equivalent factors have yet to be identified in plants. Here we have identified proteins capable of interacting with the G-rich single-stranded telomeric repeat from the Arabidopsis extracts by affinity chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis indicates that the isolated protein is a chloroplast RNA-binding protein (and a truncated derivative). The truncated derivative, which we refer to as STEP1 (single-stranded telomere-binding protein 1), binds specifically the single-stranded G-rich plant telomeric DNA sequences but not double-stranded telomeric DNA. Unlike the chloroplast-localized full-length RNA-binding protein, STEP1 localizes exclusively to the nucleus, suggesting that it plays a role in plant telomere biogenesis. We also demonstrated that the specific binding of STEP1 to single-stranded telomeric DNA inhibits telomerase-mediated telomere extension. The evidence presented here suggests that STEP1 is a telomere-end binding protein that may contribute to telomere length regulation by capping the ends of chromosomes and thereby repressing telomerase activity in plants.  相似文献   

9.
Recombinational telomere elongation (RTE) known as alternate lengthening of telomeres is the mechanism of telomere maintenance in up to 5 to 10% of human cancers. The telomeres of yeast mutants lacking telomerase can also be maintained by recombination. Previously, we proposed the roll-and-spread model to explain this elongation in the yeast Kluveromyces lactis. This model suggests that a very small ( approximately 100-bp) circular molecule of telomeric DNA is copied by a rolling circle event to generate a single long telomere. The sequence of this primary elongated telomere is then spread by recombination to all remaining telomeres. Here we show by two-dimensional gel analysis and electron microscopy that small circles of single- and double-stranded telomeric DNA are commonly made by recombination in a K. lactis mutant with long telomeres. These circles were found to be especially abundant between 100 and 400 bp (or nucleotides). Interestingly, the single-stranded circles consist of only the G-rich telomeric strand sequence. To our knowledge this is the first report of single-stranded telomeric circles as a product of telomere dysfunction. We propose that the small telomeric circles form through the resolution of an intratelomeric strand invasion which resembles a t-loop. Our data reported here demonstrate that K. lactis can, in at least some circumstances, make telomeric circles of the very small sizes predicted by the roll-and-spread model. The very small circles seen here are both predicted products of telomere rapid deletion, a process observed in both human and yeast cells, and predicted templates for roll-and-spread RTE.  相似文献   

10.
Oxytricha nova telomere end-binding protein specifically recognizes and caps single strand (T(4)G(4))(n) telomeric DNA at the very 3'-ends of O. nova macronuclear chromosomes. Proteins homologous to the N-terminal domain of OnTEBP alpha subunit have now been identified in Oxytricha trifallax, Stylonychia mytilis, Euplotes crassus, Schizosaccharomyces pombe, and Homo sapiens, suggesting that this protein is widely distributed in eukaryotes. We describe here the crystal structures of the N-terminal single-stranded DNA (ssDNA)-binding domain of O. nova telomere end-binding protein alpha subunit both uncomplexed and complexed with single strand telomeric DNA. These structures show how the N-terminal domain of alpha alone, in the absence of the beta subunit and without alpha dimerization, can bind single-stranded telomeric DNA in a sequence-specific and 3'-end-specific manner. Furthermore, comparison of the uncomplexed and complexed forms of this protein shows that the ssDNA-binding site is largely pre-organized in the absence of ssDNA with modest, but interesting, rearrangements of amino acid side-chains that compose the ssDNA-binding site. The structures described here extend our understanding of structures of O. nova telomeric complexes by adding uncomplexed and complexed forms of monomeric alpha to previously described structures for (alpha 56/ssDNA)(2) dimer and alpha 56/beta 28/ssDNA ternary complexes. We believe that each of these four structures represent intermediates in an ordered assembly/disassembly pathway for O. nova telomeric complexes.  相似文献   

11.
Ku is a heterodimeric protein with high binding affinity for ends, nicks, and gaps in double-stranded DNA. Both in mammalian cells and in budding yeast, Ku plays a role in nonhomologous end joining in the double strand break repair pathway. However, Ku has a more significant role in DNA repair in mammalian cells compared with yeast, in which a homology-dependent pathway is the predominant one. Recently Ku has been shown to be a likely component of the telomeric complex in yeast, suggesting the possibility of a similar role for Ku at mammalian telomeres. However, long single-stranded G-rich overhangs are continuously present at mammalian but not at yeast telomeres. These overhangs have the potential to fold in vitro into G-G base-paired conformations, such as G-quartets, that might prevent Ku from recognizing telomeric ends and thus offer a mechanism to sequester the telomere from the prevalent double strand break repair pathway in mammals. We show here that Ku binds to mammalian telomeric DNA ends in vitro and that G-quartet conformations are unable to prevent Ku from binding with high affinity to the DNA. Our results indicate that the DNA binding characteristics of Ku are consistent with its direct interaction with telomeric DNA in mammalian cells and its proposed role as a telomere end factor.  相似文献   

12.
Imp4p is a component of U3 snoRNP (small nucleolar ribonucleoprotein) involved in the maturation of 18S rRNA. We have shown that Imp4p interacts with Cdc13p, a single-stranded telomere-binding protein involved in telomere maintenance. To understand the role of Imp4p in telomeres, we purified recombinant Imp4p protein and tested its binding activity towards telomeric DNA using electrophoretic mobility-shift assays. Our results showed that Imp4p bound specifically to single-stranded telomeric DNA in vitro. The interaction of Imp4p to telomeres in vivo was also demonstrated by chromatin immunoprecipitation experiments. Significantly, the binding of Imp4p to telomeres was not limited to yeast proteins, since the hImp4 (human Imp4) also bound to vertebrate single-stranded telomeric DNA. Thus we conclude that Imp4p is a novel telomeric DNA-binding protein that, in addition to its role in rRNA processing, might participate in telomere function.  相似文献   

13.
Structural properties of DNA oligonucleotides corresponding to the single-stranded molecular terminus of telomeres from several organisms were analyzed. Based on physical studies including nondenaturing polyacrylamide gel electrophoresis, absorbance thermal denaturation analysis, and 1H and 31P nuclear magnetic resonance spectroscopy, we conclude that these molecules can self-associate by forming non-Watson-Crick, guanine.guanine based-paired, intramolecular structures. These structures form below 40 degrees C at moderate ionic strength and neutral pH and behave like hairpin duplexes in nondenaturing polyacrylamide gels. Detailed analysis of the hairpin structure formed by the telomeric sequence from Tetrahymena, (T2G4)4, shows that it is a unique structure stabilized by hydrogen bonds and contains G residues in the syn conformation. We propose that this novel form of DNA is important for telomere function and sets a precedent for the biological relevance of non-Watson-Crick base-paired DNA structures.  相似文献   

14.
The activation of a telomere maintenance mechanism is required for cancer development in humans. While most tumors achieve this by expressing the enzyme telomerase, a fraction (5–15%) employs a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Here we show that loss of the single-stranded DNA-binding protein replication protein A (RPA) in human ALT cells, but not in telomerase-positive cells, causes increased exposure of single-stranded G-rich telomeric DNA, cell cycle arrest in G2/M phase, accumulation of single-stranded telomeric DNA within ALT-associated PML bodies (APBs), and formation of telomeric aggregates at the ends of metaphase chromosomes. This study demonstrates differences between ALT cells and telomerase-positive cells in the requirement for RPA in telomere processing and implicates the ALT mechanism in tumor cells as a possible therapeutic target.  相似文献   

15.
Mammalian telomeres are composed of G-rich repetitive double-stranded (ds) DNA with a 3' single-stranded (ss) overhang and associated proteins that together maintain chromosome end stability. Complete replication of telomeric DNA requires de novo elongation of the ssDNA by the enzyme telomerase, with telomeric proteins playing a key role in regulating telomerase-mediated telomere replication. In regards to the protein component of mammalian telomeres, TRF1 and TRF2 bind to the dsDNA of telomeres, whereas POT1 binds to the ssDNA portion. These three proteins are linked through either direct interactions or by the proteins TIN2 and TPP1. To determine the biological consequence of connecting telomeric dsDNA to ssDNA through a multiprotein assembly, we compared the effect of expressing TRF1 and POT1 in trans versus in cis in the form of a fusion of these two proteins, on telomere length in telomerase-positive cells. When expressed in trans these two proteins induced extensive telomere elongation. Fusing TRF1 to POT1 abrogated this effect, inducing mild telomere shortening, and generated looped DNA structures, as assessed by electron microscopy, consistent with the protein forming a complex with dsDNA and ssDNA. We speculate that such a protein bridge between dsDNA and ssDNA may inhibit telomerase access, promoting telomere shortening.  相似文献   

16.
In association with a phylogenetic tree of Asparagales, our previous results showed that a distinct clade included plant species where the ancestral, Arabidopsis-type of telomeric repeats (TTTAGGG)n had been partially, or fully, replaced by the human-type telomeric sequence (TTAGGG)n. Telomerases of these species synthesize human repeats with a high error rate in vitro. Here we further characterize the structure of telomeres in these plants by analyzing the overall arrangement of major and minor variants of telomeric repeats using fluorescence in situ hybridization on extended DNA strand(s). Whilst the telomeric array is predominantly composed of the human variant of the repeat, the ancestral, Arabidopsis-type of telomeric repeats was ubiquitously observed at one of the ends and/or at intercalary positions of extended telomeric DNAs. Another variant of the repeat typical of Tetrahymena was observed interspersed in about 20% of telomerics. Micrococcal nuclease digestions indicated that Asparagales plants with a human-type of telomere have telomeric DNA organised into nucleosomes. However, unexpectedly, the periodicity of the nucleosomes is not significantly shorter than bulk chromatin as is typical of telomeric chromatin. Using electrophoretic mobility shift assays we detected in Asparagales plants with a human type of telomere a 40-kDa protein that forms complexes with both Arabidopsis- and human-type G-rich telomeric strands. However, the protein shows a higher affinity to the ancestral Arabidopsis-type sequence. Two further proteins were found, a 25-kDa protein that binds specifically to the ancestral sequence and a 15-kDa protein that binds to the human-type telomeric repeat. We discuss how the organisation of the telomere repeats in Asparagales may have arisen and stabilised the new telomere at the point of mutation.  相似文献   

17.
Telomere protection by mammalian Pot1 requires interaction with Tpp1   总被引:4,自引:0,他引:4  
The shelterin complex at mammalian telomeres contains the single-stranded DNA-binding protein Pot1, which regulates telomere length and protects chromosome ends. Pot1 binds Tpp1, the shelterin component that connects Pot1 to the duplex telomeric DNA-binding proteins Trf1 and Trf2. Control of telomere length requires that Pot1 binds Tpp1 as well as the single-stranded telomeric DNA, but it is not known whether the protective function of Pot1 depends on Tpp1. Alternatively, Pot1 might function similarly to the Pot1-like proteins of budding and fission yeast, which have no known Tpp1-like connection to the duplex telomeric DNA. Using mutant mouse cells with diminished Tpp1 levels, RNA interference directed to mouse Tpp1 and Pot1, and complementation of mouse Pot1 knockout cells with human and mouse Pot1 variants, we show here that Tpp1 is required for the protective function of mammalian Pot1 proteins.  相似文献   

18.
We have identified a rice gene encoding a DNA-binding protein that specifically recognizes the telomeric repeat sequence TTTAGGG found in plants. This gene, which we refer to as RTBP1 (rice telomere-binding protein 1), encodes a polypeptide with a predicted molecular mass of 70 kDa. RTBP1 is ubiquitously expressed in various organs and binds DNA with two or more duplex TTTAGGG repeats. The predicted protein sequence includes a single domain at the C terminus with extensive homology to Myb-like DNA binding motif. The Myb-like domain of RTBP1 is very closely related to that of other telomere-binding proteins, including TRF1, TRF2, Taz1p, and Tbf1p, indicating that DNA-binding domains of telomere-binding proteins are well conserved among evolutionarily distant species. To obtain precise information on the sequence of the DNA binding site recognized by RTBP1, we analyzed the sequence-specific binding properties of the isolated Myb-like domain of RTBP1. The isolated Myb-like domain was capable of sequence-specific DNA binding as a homodimer. Gel retardation analysis with a series of mutated telomere probes revealed that the internal GGGTTT sequence in the two-telomere repeats is critical for binding of Myb-like domain of RTBP1, which is consistent with the model of the TRF1.DNA complex showing that base-specific contacts are made within the sequence GGGTTA. To the best of our knowledge, RTBP1 is the first cloned gene in which the product is able to bind double-stranded telomeric DNA in plants. Because the Myb-like domain appears to be a significant motif for a large class of proteins that bind the duplex telomeric DNA, RTBP1 may play important roles in plant telomere function in vivo.  相似文献   

19.
Binding of the telomerase ribonucleoprotein from the ciliate Euplotes aediculatus to telomeric DNA in vitro has been examined by electron microscopy (EM). Visualization of the structures that formed revealed a globular protein complex that localized to the DNA end containing the E. aediculatus telomere consensus 3'-single-strand T(4)G(4)T(4)G(4)T(4)G(2) overhang. Gel filtration confirmed that purified E. aediculatus telomerase is an active dimer in solution, and comparison of the size of the DNA-associated complex with apoferritin suggests that E. aediculatus telomerase binds to a single telomeric 3'-end as a dimer. Up to 43% of the telomerase-DNA complexes appeared by EM to involve tetramers or larger multimers of telomerase in association with two or more DNA ends. These data provide the first direct evidence that telomerase is a functional dimer and suggest that two telomerase ribonucleoprotein particles cooperate to elongate each Euplotes telomere in vivo.  相似文献   

20.
Telomere-binding proteins have recently been recognised not only as necessary building blocks of telomere structure, but namely as components which are of central importance to telomere metabolism being involved in regulation of telomere length as well as in protective (capping) function of telomeres. Although the knowledge on plant telomeric DNA-binding proteins lags behind that in human and yeast, recent data show both analogies and plant-specific features in the composition and interactions of telomeric proteins. This review focuses primarily on proteins with known amino acid sequence. These can be classified into following groups: 1) the family of proteins with Myb domain at C-terminus, 2) proteins with Myb domain at N-terminus, both binding double-stranded DNA of telomeric repeats TTTAGGG, 3) the single-stranded DNA-binding proteins, and 4) other proteins that act also in non-telomeric chromatin regions. Proteins with C-terminal Myb domain reported as IBP family were previously found in human, whereas Smh family representing proteins with Myb domain at N-terminus was identified only in plants. Also RRM family of the single-stranded DNA-binding proteins is likely to be plant specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号