首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poliovirus-specific RNA-dependent RNA polymerase (replicase, 3Dpol) was purified from HeLa cells infected with poliovirus. The purified enzyme preparation contained two proteins of apparent molecular weights 63,000 and 35,000. The 63,000-Mr polypeptide was virus-specific RNA-dependent RNA polymerase, and the 35,000-Mr polypeptide was of host origin. Both polypeptides copurified through five column chromatographic steps. The purified enzyme preparation catalyzed synthesis of covalently linked dimeric RNA products from a poliovirion RNA template. This reaction was absolutely dependent on added oligo(U) primer, and the dimeric product appeared to be made of both plus- and minus-strand RNA molecules. Experiments with 5' [32P]oligo(U) primer and all four unlabeled nucleotides suggest that the viral replicase elongates the primer, copying the poliovirion RNA template (plus strand), and the newly synthesized minus strand snaps back on itself to generate a template-primer structure which is elongated by the replicase to form covalently linked dimeric RNA molecules. Kinetic studies showed that a partially purified preparation of poliovirus replicase contains a nuclease which can cleave the covalently linked dimeric RNA molecules, generating template-length RNA products.  相似文献   

2.
3.
C D Morrow  G F Gibbons  A Dasgupta 《Cell》1985,40(4):913-921
The HeLa cell protein (host factor) required for in vitro replication of poliovirus has been identified as a 67,000 dalton phosphoprotein. The purified protein displays three activities in vitro: stimulation of poliovirus RNA synthesis in the presence of poliovirus replicase, apparent self-phosphorylation, and phosphorylation of the alpha-subunit of eukaryotic protein synthesis initiation factor 2 (eIF-2). All three activities can be removed or inhibited by an antibody to host factor. Partially purified preparations of reticulocyte eIF-2 contain a similar phosphoprotein and display host factor activity in the viral RNA synthesis assay in vitro. In vitro phosphorylation of the 67 kd protein can be stimulated by low concentrations of double-stranded RNA. Addition of phosphorylated host factor in an in vitro RNA synthesis assay significantly changes the kinetics of viral RNA synthesis, indicating that protein phosphorylation may play an important role in viral RNA replication.  相似文献   

4.
Anti-VPg immunoprecipitable RNA labeled in vitro during a poliovirus RNA polymerase reaction was formed by the elongation of VPg-containing template fragments rather than by initiation with VPg. The reaction was dependent on a host factor (terminal uridylyl transferase). The incorporation of labeled UTP could be detected with only the host factor present.  相似文献   

5.
An enzyme which catalyzes the addition of a single UMP residue from UTP to the 3'-end of an RNA primer and which is referred to as terminal uridylyl transferase (TUT) has been extensively purified from the membrane fraction of vigna unguiculata leaves. The purification procedure involved (i) solubilization by cation depletion (ii) DEAE-Sepharose CL-6B column chromatography (iii) affinity chromatography of poly(U)-Sepharose 4B and (iv) glycerol gradient centrifugation. The molecular weight of the native enzyme was approximately 50,000 as determined by velocity sedimentation. Under conditions that were optimal for UMP-incorporation (5 mM Mg2+, low salt, 30 degrees C) TUT displayed a marked specificity for UTP as substrate, was unable to incorporate deoxyribonucleoside triphosphates and required a single-stranded oligo- or polyribonucleotide as primer. When oligoA20, tRNAasp of E. coli or alfalfa mosaic virus RNA 4 were used as primers at various substrate to primer ratio's, the vast majority of the product appeared to consist of primer molecules elongated with a single UMP residue as shown by polyacrylamide gelelectrophoresis and nearest neighbour analysis. We believe TUT to be a novel enzyme which has not been reported before and which may be a feasible tool in RNA sequencing as it enables the specific 3'-terminal labeling of RNA molecules.  相似文献   

6.
HeLa cell extracts contain significant amounts of terminal uridylyl transferase (TUTase) activity. In a template-independent reaction with labeled UTP, these enzymes are capable of modifying a broad spectrum of cellular RNA molecules in vitro . However, fractionation of cell extracts by gel filtration clearly separated two independent activities. In addition to a non-specific enzyme, an additional terminal uridylyl transferase has been identified that is highly specific for cellular and in vitro synthesized U6 small nuclear RNA (snRNA) molecules. This novel TUTase enzyme was also able to select as an efficient substrate U6 snRNA species from higher eucaryotes. In contrast, no labeling was detectable with purified fission yeast RNA. Using synthetic RNAs containing different amounts of transcribed 3'-end UMP residues, high resolution gel electrophoresis revealed that U6 snRNA species with three terminal U nucleotides served as the optimal substrate for the transferase reaction. The 3'-end modification of the optimal synthetic substrate was identical to that observed with endogenous U6 snRNA isolated from HeLa cells. Therefore, we conclude that the specific addition of UMP residues to 3'-recessed U6 snRNA molecules reflects a recycling process, ensuring the functional regeneration for pre-mRNA splicing of this snRNA.  相似文献   

7.
The soluble phase of the cytoplasm of human rhinovirus type 2-infected cells contains an enzymatic activity able to copy rhinovirion RNA without an added primer. This RNA-dependent RNA polymerase (replicase) makes a specific copy of the added rhinovirion RNA, as shown by hybridization of the product to its template RNA but not to other RNAs. The same replicase preparation also contains a virus-specific polyuridylic acid [poly(U)] polymerase activity which is dependent on added polyadenylic acid-oligouridylic acid template-primer. Both activities purify together until a step at which poly(U) polymerase but no replicase activity is recovered. Addition of a purified HeLa cell protein (host factor) to this poly(U) polymerase completely reconstitutes rhinovirus replicase activity. Host factor activity can be supplied by adding oligouridylic acid, suggesting that the host cell protein acts at the initiation step of rhinovirus RNA replication. A virus-specific 64,000-dalton protein purifies with both poly(U) polymerase and replicase activities.  相似文献   

8.
Initiation of poliovirus RNA translation by internal entry of ribosomes is believed to require the participation of trans-acting factors. The mechanism of action of these factors is poorly defined. The limiting amount of one of these factors, La protein, in rabbit reticulocyte lysates (RRL) has been postulated to partially explain the inefficient translation of poliovirus RNA in this system. To further characterize La activity in translation and to identify other potential limiting factors, we assayed the ability of La protein as well as purified initiation factors, eIF-2, guanine nucleotide exchange factor (GEF), eIF-4A, eIF-4B, eIF-4F, and eIF-3, to stimulate the synthesis of P1, the capsid precursor protein, in poliovirus type 1 (Mahoney) RNA-programmed RRL. Of the proteins tested, only La, GEF, and to some extent eIF-2 stimulated the synthesis of P1. The enhanced translation of P1 in response to La occurred concomitantly with the inhibition of synthesis of most aberrant polypeptides, resulting from initiation in the middle of the genome. Deletion of the carboxy-terminal half (214 amino acids) of La did not decrease its binding to the poliovirus 5' untranslated region but abrogated the stimulatory and correcting activity in translation. In contrast to La, GEF and eIF-2 stimulated the overall translation and increased the synthesis of aberrant products as well as P1. Neither La, GEF, nor any other factor stimulated translation of encephalomyocarditis virus RNA in RRL. The implications of these findings for the mechanism of internal translation initiation on picornavirus RNAs are discussed.  相似文献   

9.
We have expressed in the yeast Saccharomyces cerevisiae a full-length poliovirus cDNA clone under the control of the GAL10 promoter to better characterize the effect of poliovirus on host cell metabolism. We find that yeast cells are unable to translate poliovirus RNA in vivo and that this inhibition is mediated through the 5' untranslated region of the viral RNA. The in vivo inhibition of translation of poliovirus RNA and P2CAT RNA (which contains the 5' untranslated region fused upstream of the bacterial chloramphenicol transferase gene) can be mimicked in vitro in yeast translation lysates. In fact, a trans-acting inhibitor present in yeast lysates can inhibit translation of either poliovirus or P2CAT RNA in HeLa cell translation lysates. In contrast, when the inhibitor is added to translations programmed with chloramphenicol acetyltransferase RNA, yeast prepro-alpha-factor RNA, or an RNA containing the internal ribosome entry site of encephalomyocarditis virus, no inhibition is seen. The inhibitory activity has been partially purified by DEAE-Sephacel chromatography. The partially purified inhibitor is heat stable, escapes phenol extraction, is resistant to proteinase K and DNase I treatment, and is sensitive to RNase A digestion, suggesting that the inhibitor is an RNA. In an in vitro translation assay, the inhibitory activity can be overcome by increasing the concentration of HeLa cell lysate but not P2CAT RNA, suggesting that the inhibitor interacts (directly or indirectly) with one or more components of the HeLa cell translational machinery rather than with the viral RNA.  相似文献   

10.
Gerber K  Wimmer E  Paul AV 《Journal of virology》2001,75(22):10969-10978
The replication of human rhinovirus 2 (HRV2), a positive-stranded RNA virus belonging to the Picornaviridae, requires a virus-encoded RNA polymerase. We have expressed in Escherichia coli and purified both a glutathione S-transferase fusion polypeptide and an untagged form of the HRV2 RNA polymerase 3D(pol). Using in vitro assay systems previously described for poliovirus RNA polymerase 3D(pol) (J. B. Flanegan and D. Baltimore, Proc. Natl. Acad. Sci. USA 74:3677-3680, 1977; A. V. Paul, J. H. van Boom, D. Filippov, and E. Wimmer, Nature 393:280-284, 1998), we have analyzed the biochemical properties of the two different enzyme preparations. HRV2 3D(pol) is both template and primer dependent, and it catalyzes two types of synthetic reactions in the presence of UTP, Mn(2+), and a poly(A) template. The first consists of an elongation reaction of an oligo(dT)(15) primer into poly(U). The second is a protein-priming reaction in which the enzyme covalently links UMP to the hydroxyl group of tyrosine in the terminal protein VPg, yielding VPgpU. This precursor is elongated first into VPgpUpU and then into VPg-linked poly(U), which is identical to the 5' end of picornavirus minus strands. The two forms of the enzyme are about equally active both in the oligonucleotide elongation and in the VPg-primed reaction. Various synthetic mutant VPgs were tested as substrates in the VPg uridylylation reaction.  相似文献   

11.
The state of adenylylation of glutamine synthetase in Escherichia coli is regulated by the adenylyl transferase, the PII regulatory protein, uridylyl transferase (UTase), and the uridylyl removing enzyme (UR). The regulatory protein exists in an unmodified state (PII) which promotes adenylylation and in a uridylylated form (PII·UMP) which promotes deadenylylation of glutamine synthetase. The UR and UTase enzymes catalyze the interconversion of PII and PII·UMP. The UR and UTase have been partially purified by chromatography over DEAE-cellulose, AH-Sepharose 4B, Sephadex G-200, and gel electrophoresis. The two activities co-purify at all steps in the isolation although preparations containing different ratios of UTase:UR activities have been isolated. These UR·UTase activities have apparent molecular weight of 140,000. Both activities are inactivated by sulfhydryl reagents, both activities are heat inactivated, and both are stabilized by high salt concentrations. Both activities are inhibited in the crude extract by dialyzable inhibitors, but the UR is also inhibited by a nondialyzable inhibitor. This endogenous inhibitor is of molecular weight greater than 100,000 daltons, and binds CMP and UMP which are the apparent inhibitory agents. CMP and UMP are antagonistic in their effects on the UR activity. No effect of the CMP, UMP, or the large inhibitor on the other steps in the cascade could be demonstrated. The Mn2+-supported UR activity was also shown to be inhibited by a number of divalent cations, particularly Zn2+.  相似文献   

12.
V Ambros  R F Pettersson  D Baltimore 《Cell》1978,15(4):1439-1446
The 5' terminal protein (VPg) on poliovirion RNA can be removed by cell-free extracts from a variety of uninfected cells. This soluble enzymatic activity is found in both nuclear and cytoplasmic extracts of heLa cells and is activated by Mg++. The enzyme activity cleaves the tyrosine-phosphate bond that links the protein to the RNA. In a partially purified form it has insufficient nonspecific protease or nuclease activity to account for its action. The existence of this enzyme implies that poliovirus RNA is translated in cell-free extracts in a form that lacks the 5' terminal protein. The role of this enzyme in the uninfected cell is not known.  相似文献   

13.
Poliovirus replicase can be isolated in a form which depends on either oligo(U) or on a host cell protein for the initiation of copying of poliovirion (plus strand) RNA. The product of replicase reactions--initiated either with host factor or with oligo(U)--includes full length (35 S) RNA molecules, largely in double-stranded form, which contain the ribonuclease T1-resistant oligonucleotides of the poliovirus minus strand. For the oligo(U)-stimulated reaction, it is shown that the oligo(U) primer is covalently associated with full length product at its 5'-end. For either the host factor- or oligo(U)-dependent reactions, full length molecules appear only after 15 min of synthesis. The fraction of 35 S product is increased by raising the concentration of the limiting nucleoside triphosphate. The reaction is inhibited by as little as 100 mM salt, although it is stimulated by low (20 mM) salt concentrations. Zinc stimulates overall synthesis, but not the rate of appearance of full length molecules; the reaction is inhibited by agents which chelate zinc. Although synthesis of full length products occurs much more slowly than in the infected cell, this soluble system appears to mimic quite faithfully the initial steps of poliovirus replication.  相似文献   

14.
15.
An RNA-dependent RNA polymerase (replicase) extract from brome mosaic virus-infected barley leaves has been shown to initiate synthesis of (-) sense RNA from (+) sense virion RNA. Initiation occurred de novo, as demonstrated by the incorporation of [gamma-32P]GTP into the product. Sequencing using cordycepin triphosphate to terminate (-) strands during their synthesis by the replicase generated sequence ladders that confirmed that copying was accurate, and that initiation occurred very close to the 3' end. The precise site of initiation was further defined by testing the replicase template activity after stepwise removal of 3'-terminal nucleotides. Whereas removal of the terminal A did not decrease template activity, removal of the next nucleotide (C-2) did. Thus, initiation almost certainly occurs opposite the penultimate 3'-nucleotide (C-2) in vitro. The structure of the double-stranded replicative form of RNA isolated from brome mosaic virus-infected leaves was consistent with such a mechanism occurring in vivo, in that it lacked the 3'-terminal A found on virion RNAs. The specific site of (-) strand initiation and normal template activity were retained for RNAs with as many as 15 to 30 A residues added to the 3' end. However, only limited oligonucleotide 3' extensions can be present on active templates. In order to assess the 5' extent of sequences required for an active template, a 134-nucleotide-long fragment of brome mosaic virus RNA, corresponding to the tRNA-like structure, was generated. This RNA had high template activity, but a shorter 3' (85-nucleotide) fragment was inactive. RNAs with various heterologous sequences 5' to position 134 also showed high template activity. Thus, the 3'-terminal tRNA-like structure common to all four brome mosaic virus virion RNAs contains all of the signals required for initiation of replication, and sequences 5' to it do not play a role in template selection.  相似文献   

16.
17.
Purified recombinant viral replicases are useful for studying the mechanism of viral RNA replication in vitro. In this work, we obtained a highly active template-dependent replicase complex for Cucumber necrosis tombusvirus (CNV), which is a plus-stranded RNA virus, from Saccharomyces cerevisiae. The recombinant CNV replicase showed properties similar to those of the plant-derived CNV replicase (P. D. Nagy and J. Pogany, Virology 276:279-288, 2000), including the ability (i). to initiate cRNA synthesis de novo on both plus- and minus-stranded templates, (ii). to generate replicase products that are shorter than full length by internal initiation, and (iii). to perform primer extension from the 3' end of the template. We also found that isolation of functional replicase required the coexpression of the CNV p92 RNA-dependent RNA polymerase and the auxiliary p33 protein in yeast. Moreover, coexpression of a viral RNA template with the replicase proteins in yeast increased the activity of the purified CNV replicase by 40-fold, suggesting that the viral RNA might promote the assembly of the replicase complex and/or that the RNA increases the stability of the replicase. In summary, this paper reports the first purified recombinant tombusvirus replicase showing high activity and template dependence, a finding that will greatly facilitate future studies on RNA replication in vitro.  相似文献   

18.
A terminal adenylyl transferase (TATase) activity has been identified in preparations of purified poliovirus RNA-dependent RNA polymerase (3Dpol). Highly purified 3Dpol is capable of adding [32P]AMP to the 3' ends of chemically synthesized 12-nucleotide (nt)-long RNAs. The purified 52-kDa polypeptide, isolated after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured, retained the TATase activity. Two 3Dpol mutants, purified from Escherichia coli expression systems, displayed no detectable polymerase activity and were unable to catalyze TATase activity. Likewise, extracts from the parental E. coli strain that harbored no expression plasmid were unable to catalyze formation of the TATase products. With the RNA oligonucleotide 5'-CCUGCUUUUGCA-3' used as an acceptor, the products formed by wild-type 3Dpol were 9 and 18 nt longer than the 12-nt oligomer. GTP, CTP, and UTP did not serve as substrates for transfer to this RNA, either by themselves or when all deoxynucleoside triphosphates were present in the reaction. Results from kinetic and stoichiometric analyses suggest that the reaction is catalytic and shows substrate and enzyme dependence. The 3'-terminal 13 nt of poliovirus minus-strand RNA also served as an acceptor for TATase activity, raising the possibility that this activity functions in poliovirus RNA replication. The efficiency of utilization and the nature of the products formed during the reaction were dependent on the acceptor RNA.  相似文献   

19.
C K Biebricher  R Luce 《The EMBO journal》1992,11(13):5129-5135
SV-11 is a short-chain [115 nucleotides (nt)] RNA species that is replicated by Q beta replicase. It is reproducibly selected when MNV-11, another 87 nt RNA species, is extensively amplified by Q beta replicase at high ionic strength and long incubation times. Comparing the sequences of the two species reveals that SV-11 contains an inverse duplication of the high-melting domain of MNV-11. SV-11 is thus a recombinant between the plus and minus strands of MNV-11 resulting in a nearly palindromic sequence. During chain elongation in replication, the chain folds consecutively to a metastable secondary structure of the RNA, which can rearrange spontaneously to a more stable hairpin-form RNA. While the metastable form is an excellent template for Q beta replicase, the stable RNA is unable to serve as template. When initiation of a new chain is suppressed by replacing GTP in the replication mixture by ITP, Q beta replicase adds nucleotides to the 3' terminus of RNA. The replicase uses parts of the RNA sequence, preferentially the 3' terminal part for copying, thereby creating an interior duplication. This reaction is about five orders of magnitude slower than normal template-instructed synthesis. The reaction also adds nucleotides to the 3' terminus of some RNA molecules that are unable to serve as templates for Q beta replicase.  相似文献   

20.
Recognition and elongation of telomeres by telomerase   总被引:9,自引:0,他引:9  
Telomeres stabilize chromosomal ends and allow their complete replication in vivo. In diverse eukaryotes, the essential telomeric DNA sequence consists of variable numbers of tandem repeats of simple, G + C rich sequences, with a strong strand bias of G residues on the strand oriented 5' to 3' toward the chromosomal terminus. This strand forms a protruding 3' over-hang at the chromosomal terminus in three different eukaryotes analyzed. Analysis of yeast and protozoan telomeres showed that telomeres are dynamic structures in vivo, being acted on by shortening and lengthening activities. We previously identified and partially purified an enzymatic activity, telomere terminal transferase, or telomerase, from the ciliate Tetrahymena. Telomerase is a ribonucleoprotein enzyme with essential RNA and protein components. This activity adds repeats of the Tetrahymena telomeric sequence, TTGGGG, onto the 3' end of a single-stranded DNA primer consisting of a few repeats of the G-rich strand of known telomeric, and telomere-like, sequences. The shortest oligonucleotide active as a primer was the decamer G4T2G4. Structural analysis of synthetic DNA oligonucleotides that are active as primers showed that they all formed discrete intramolecular foldback structures at temperatures below 40 degrees C. Addition of TTGGGG repeats occurs one nucleotide at a time by de novo synthesis, which is not templated by the DNA primer. Up to 8000 nucleotides of G4T2 repeats were added to the primer in vitro. We discuss the implications of this finding for regulation of telomerase in vivo and a model for telomere elongation by telomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号