首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Renin-binding protein (RnBP) is an endogenous renin inhibitor originally isolated from porcine kidney as a complex of renin, so-called high molecular weight (HMW) renin. Our recent studies demonstrated that human RnBP is the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase [Takahashi, S. et al. (1999) J. Biochem. 125, 348-353]. We have purified recombinant human, rat, and porcine RnBPs expressed in Escherichia coli JM 109 cells. The purified recombinant RnBPs existed as dimers and inhibited porcine renin activity strongly. On the other hand, porcine renin inhibited recombinant GlcNAc 2-epimerase activities. The human GlcNAc 2-epimerase activity could not be detected in the absence of a nucleotide, whereas ATP, dATP, ddATP, ADP, and GTP enhanced the human GlcNAc 2-epimerase activity. Other nucleotides had no effect on human GlcNAc 2-epimerase activity. Rat and porcine GlcNAc 2-epimerases were activated by several nucleotides. Nucleotides that enhance the activity of GlcNAc 2-epimerases protect these enzymes against degradation by thermolysin. These results indicate that mammalian RnBPs have GlcNAc 2-epimerase activity and that nucleotides are essential for formation of the catalytic domain of the enzyme.  相似文献   

2.
Renin-binding protein (RnBP) is a highly specific renin inhibitor first isolated from porcine kidney. Our recent studies demonstrated that the human RnBP is the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase [Takahashi, S. et al. (1999) J. Biochem. 125, 348-353]. We have developed a new assay method for GlcNAc 2-epimerase activity using a system of N-acyl-D-hexosamine oxidase coupled with peroxidase and employed this method to study the effects of renin on GlcNAc 2-epimerase activity. The recombinant human (rh) RnBP existed as a dimer and its GlcNAc 2-epimerase activity was strongly inhibited by the purified renin concomitant with the formation of RnBP-renin heterodimer, so-called high molecular weight (HMW) renin. The renin activity was also inhibited by rhRnBP in a dose-dependent manner. These results indicate that renin is an inhibitor of GlcNAc 2-epimerase, and the renin-RnBP heterodimer HMW renin is an inactive form of both renin and GlcNAc 2-epimerase activities.  相似文献   

3.
Renin binding protein (RnBP), a cellular renin inhibitor, has been identified as the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase. Our recent studies demonstrated that rat GlcNAc 2-epimerase has a ten-times higher affinity for ATP, dATP, and ddATP than the human enzyme [Takahashi, S. et al. (2001) J. Biochem. 130, 815-821]. To identify the domain conferring nucleotide binding to GlcNAc 2-epimerase, we constructed a series of chimeric enzymes successively replacing the three domains of the human enzyme (N-terminal, middle, and C-terminal domains) with the corresponding domains of the rat enzyme. Chimeras were expressed in Escherichia coli JM109 cells under the control of the Taq promoter. The purified chimeric enzymes had GlcNAc 2-epimerase activity and inhibited renin activity in a dose-dependent manner. The recombinant human and rat enzymes required catalytic amounts of ATP with apparent K(m) values of 73 and 5.5 microM, respectively. Chimeric enzymes of HHR, RHH, and RHR (H, human type domain; R, rat type domain) had nearly the same nucleotide specificity as the human GlcNAc 2-epimerase. On the other hand, HRR, HRH, and RRH chimeras had the same nucleotide specificity as the rat enzyme. These results indicate that the middle domain of the GlcNAc 2-epimerase molecule participates in the specificity for and binding of nucleotides, and that nucleotides are essential to form the catalytic domain of the enzyme.  相似文献   

4.
Renin binding protein (RnBP) is a proteinous renin inhibitor firstly isolated from porcine kidney. Recently, the protein was identified as the enzyme, N-acetyl-D-glucosamine (GlcNAc) 2-epimerase. The GlcNAc 2-epimerase activity of recombinant human RnBP was specifically inhibited by SH-reagents such as N-ethylmaleimide, 5, 5'-dithiobis-2-nitrobenzoate, and iodoacetic acid, indicating that the most probable reactive site is a cysteine residue. To identify the active site residue(s), we have constructed ten cysteine residue mutants (C41S, C66S, C104S, C125S, C210S, C239S, C302S, C380S, C386S, and C390S) for human GlcNAc 2-epimerase and expressed them in Escherichia coli cells. The relative specific activities of C41S, C66S, C125S, C210S, C239S, C302S, C386S, and C390S are nearly the same to that of the wild-type enzyme. The specific activity of the C104S mutant is 26% of that of the wild-type enzyme. The expression of the C380S mutant in E. coli cells was detected on Western blotting, whereas GlcNAc 2-epimerase activity was not detected in the extract. These results indicate that Cys380 is essential for the enzymatic activity of human GlcNAc 2-epimerase.  相似文献   

5.
Renin binding protein (RnBP) was purified from porcine kidney using pepstatin affinity column chromatography, DEAE-Sepharose column chromatography, gel filtration on Ultrogel-AcA 34, aminohexyl-Sepharose 4B column chromatography, and high performance liquid chromatography (HPLC) on TSK-gel G-3000 SW. The purified preparation was homogeneous as judged by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, polyacrylamide disc gel electrophoresis and isoelectric focusing on polyacrylamide gel. The isoelectric point was at pH 4.85, and the apparent molecular weight of RnBP was estimated to be 42,000 by SDS-polyacrylamide gel electrophoresis. The preparation did not show any renin activity and was stable for 30 min at 37 degrees C between pH 5.0 and 9.0 or on storage for 4 weeks at 4 degrees C or -80 degrees C. The activity of renin was greatly inhibited by RnBP. From the kinetic analysis of the inhibition we roughly estimated the dissociation constant between renin and RnBP to be about 0.2 nM, assuming that the stoichiometry in the complex, i.e., high molecular weight (HMW) renin, is one to one, and that the complex is inactive. The inhibitory activity of RnBP was lost by acidification at pH 3.0 and the activity of renin was restored. The purified RnBP formed a single precipitin line with the antiserum prepared with the purified HMW renin as antigen, which is RnBP-renin complex (Takahashi, S., et al. (1983) J. Biochem. 93, 265-274), and this line fused with one of the two precipitin lines formed between HMW renin and anti-HMW renin antiserum. The other of the two lines was between renin and anti-HMW renin antiserum. The purified preparation was thus identified as RnBP. The HMW renin was reconstituted with the purified RnBP and renin, and the apparent molecular weight of the reconstituted specimen was estimated to be 60,000 by gel filtration on Ultrogel AcA 44.  相似文献   

6.
The high molecular weight (HMW) renin was purified from porcine kidney by a procedure involving extraction with a buffer system containing protease inhibitors, ammonium sulfate fractionation, pepstatin-aminohexyl-Sepharose 4B column chromatography, gel filtration on Ultrogel AcA 44 and aminohexyl-Sepharose 4B column chromatography. The resulting preparation showed a single band on isoelectric focusing, exhibiting an isoelectric point at pH 5.25, and was stable on storage at -80 degrees C for 4 months. The specific activity was 3.97 mg of angiotensin I formed/mg of protein per h at 37 degrees C and at pH 6.5 with porcine angiotensinogen as the substrate. When the HMW renin was exposed to acid, renin activity increased by about 5-fold and the free form of fully active renin was recovered from the acidified HMW renin, leaving an insoluble aggregate of protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the HMW renin showed two protein bands, of which one was identified as renin from the electrophoretic mobility and the other was the protein, assigned as renin binding protein (RnBP), that was insolubilized by acidification. The purified HMW renin is a complex of renin with RnBP, and the molecular weights of RnBP and renin in the HMW renin were estimated to be 39,000 and 32,000, respectively, by gel permeation liquid chromatography in 6 M guanidine-HCl. A modified rapid method for purification of renin is also presented.  相似文献   

7.
In renal extracts, some renin is present as "high molecular weight renin," a heterodimeric complex of renin with the 46-kDa renin-binding protein (RnBP), also known as N-acyl-D-glucosamine 2-epimerase. Because RnBP specifically inhibits renin activity, the protein was proposed to play an important role in the regulation of the renin-angiotensin system (RAS). Using gene targeting, we have generated mice lacking RnBP and tested this hypothesis in vivo. In particular, we analyzed biosynthesis, secretion, and activity of renin and other components of the RAS in mice lacking RnBP. Despite extensive investigations, we were unable to detect any major effects of RnBP deficiency on the plasma and renal RAS or on blood pressure regulation. Contrary to previous hypotheses, we conclude that RnBP does not play a significant role in the regulation of renin activity in plasma or kidney. However, RnBP knockout mice excrete an abnormal pattern of carbohydrates in the urine, indicating a role of the protein in renal carbohydrate metabolism.  相似文献   

8.
Renin-binding protein (RnBP) is an endogenous renin inhibitor originally isolated from porcine kidney. It was recently identified as the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase [Takahashi, S. et al. (1999) J. Biochem. 125, 348-353] and its active site residue was determined to be cysteine 380 by site-directed mutagenesis [Takahashi, S. et al. (1999) J. Biochem. 126, 639-642]. To further investigate the relationship between structure and function of recombinant human (rh) RnBP as a GlcNAc 2-epimerase, we have constructed several C-terminal deletion and multi-cysteine/serine mutants of rhGlcNAc 2-epimerase and expressed them in Escherichia coli cells. The expression was detected by Western blotting using anti-rhRnBP antiserum. The C-terminal deletion mutant, Delta400-417, had approximately 50% activity relative to the wild-type enzyme, but other C-terminal deletion mutants, Delta380-417, Delta386-417, and Delta390-417, had no enzymatic activity. Mutational analysis of multi-cysteine/serine mutants revealed that cysteines 41 and 390 were critical for the activity or stabilization of the enzyme, while cysteine residues in the middle of the enzyme, cysteines 125, 210, 239, and 302, had no essential function in relation to the activity.  相似文献   

9.
The biosynthesis of a porcine renin binding protein (RnBP), which specifically binds to renin and forms an inactive high molecular weight renin, was investigated. mRNAs from various porcine tissues were used to investigate in vitro protein synthesis. The kidney mRNA directed the synthesis of a high level of RnBP, whereas the liver, adrenal and pituitary gland mRNAs gave as low but significant level of it. The in vitro synthesized RnBP as well as the immunologically detected RnBP synthesized in vivo had the same molecular weight, 42,000, as that of the purified protein. Moreover, both the human and rat kidney mRNAs directed the synthesis of this protein identified with an anti-porcine RnBP antibody. These results strongly indicate that RnBP, present in various mammalian species, is synthesized in renin-producing tissues as the mature size and undergoes binding with renin without proteolytic processing.  相似文献   

10.
We purified, from human kidney, a protein that reacts with rabbit anti-porcine kidney renin binding protein (RnBP) antiserum by trapping with porcine kidney renin. The purified preparation showed a single protein peak on gel filtration by high performance liquid chromatography (HPLC) and two protein bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The latter two kinds of protein were identified as the porcine renin and human kidney protein from their electrophoretic mobilities and reactivity toward rabbit anti-porcine kidney renin and RnBP antisera. The molecular weights of the purified preparation and the human kidney protein were estimated to be 56,000 by HPLC and 43,000 by SDS-PAGE, respectively. The specific activity of porcine renin in the purified preparation was 8.6 mg angiotensin I per mg of protein per h at 37 degrees C and pH 6.5. This specific activity was about one-fifth that of free porcine renin. Therefore, it is suggested from the reactivity toward the anti-porcine RnBP antiserum and inhibitory action toward porcine renin that the human kidney protein is RnBP and that the human RnBP is purified as a complex with porcine renin.  相似文献   

11.
To investigate the role of renin-binding protein (RnBP) in renin metabolism, RnBP expression plasmid, which was constructed to express human RnBP under the control of mouse mammary tumor virus long terminal repeat, was transfected into mouse pituitary AtT-20 cells together with the expression plasmid encoding human renin. The transfectant secreted prorenin and active renin, whereas RnBP was expressed only in the presence of dexamethasone and without secretion into the medium. The secretion of active renin was stimulated by forskolin, and the stimulation was repressed by dexamethasone. The secretion of prorenin, however, was insensitive to forskolin irrespective of the presence or absence of dexamethasone. Moreover, the forskolin-stimulated release of active renin was hardly repressed by dexamethasone in AtT-20 cells transfected with the renin expression plasmid and a selectable plasmid pMAMneo. Coexistence of RnBP and renin mRNAs in human Wilms' tumor G-401 cells was shown by means of polymerase chain reaction of respective cDNAs from the cells. These results suggest that RnBP modulates the release of active renin in renin-producing cells.  相似文献   

12.
Rat gene for renin-binding protein (RnBP) was shown to be expressed in the kidney, adrenal gland, brain, lung, spleen, ovary, testis, and heart. On sodium depletion and captopril administration, the rat showed a marked increase in the adrenal RnBP mRNA level and a slight decrease in the kidney RnBP mRNA level. In two-kidney, one clip hypertensive rats, the RnBP mRNA levels of the clipped and contralateral kidneys were unchanged and also its adrenal mRNA level was maintained at the control level. The recombinant rat RnBP was synthesized in Escherichia coli cells and purified to apparent homogeneity. The RnBP existed as a homodimer and formed a heterodimer with rat renin to inhibit renin activity extensively. Intravenous injection of the RnBP into rats resulted in a rapid and strong inhibition of plasma renin activity, which persisted at least for 2 h. These results suggest that the expression of RnBP gene in the kidney and adrenal gland is regulated independently, and the function of RnBP is related to electrolyte homeostasis, probably through the interaction with renin.  相似文献   

13.
N-acetyl-d-neuraminic acid (NeuAc; sialic acid) is a precursor for the manufacture of many pharmaceutical drugs, such as anti-influenza virus agents. To develop a whole cell process for NeuAc production, genes of Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase (bage) and Escherichia coli N-acetyl-d-neuraminic acid lyase (nanA) were cloned and expressed in E. coli BL21 (DE3). The expressed bGlcNAc 2-epimerase was purified from the crude cell extract of IPTG-induced E. coli BL21 (DE3) (pET-bage) to homogeneity by nickel-chelate chromatography. The molecular mass of the purified bGlcNAc 2-epimerase was determined to be 42kDa by SDS-PAGE. The pH and temperature optima of the recombinant bGlcNAc 2-epimerase were pH 7.0 and 50 degrees C, respectively, and only needs 20mum ATP for maximal activity. The specific activity of bGlcNAc 2-epimerase (124Umg(-1) protein) for the conversion of N-acetyl-d-glucosamine to N-acetyl-d-manosamine was about four-fold higher than that of porcine N-acetyl-d-glucosamine 2-epimerase. A stirred glass vessel containing transformed E. coli cells expressing age gene from Anabaena sp. CH1 and NeuAc lyase gene from E. coli NovaBlue separately was used for the conversion of GlcNAc and pyruvate to NeuAc. A maximal productivity of 10.2gNeuAcl(-1)h(-1) with 33.3% conversion yield from GlcNAc could be obtained in a 12-h reaction. The recombinant E. coli cells can be reused for more than eight cycles with a productivity of >8.0gNeuAcL(-1)h(-1). In this process, the expensive activator, ATP, necessary for maximal activity of GlcNAc 2-epimerase in free enzyme system can be omitted.  相似文献   

14.
Inactive renin has been isolated from pooled amniotic fluid and purified approximately 642-fold. Prior to activation the isolates had approximately 4% of the activity found after activation. The observation is similar to that reported for inactive renin from chorionic cell culture and suggests a placental origin of amniotic fluid inactive renin. Using plasma from an estrogen-treated woman, renin substrate was recovered free of renin and inactive renin and a portion was separated into NMW and HMW components. The NMW form constituted approximately 93% and the HMW form approximately 7% of the renin substrate. Amniotic fluid inactive renin was used for determinations of enzyme-substrate kinetics with the pooled, NMW, and HMW plasma substrate and tetradecapeptide synthetic substrate, and the results were compared to similar determinations using standard renal renin. Using synthetic substrate, the kinetics of renal renin and amniotic fluid inactive renin before and after activation were similar. The kinetics of renal renin with pooled, NMW, and HMW plasma substrate were also similar. Amniotic fluid inactive renin had a lower Km with pooled than with NMW substrate, however, which resulted from a significantly smaller Km with HMW component. Although the affinity constants with pooled substrate were not different for renin and inactive renin, the Km of inactive renin was significantly less with the HMW component of plasma renin substrate. The observations are compatible with a role for placental inactive renin in normal pregnancy and suggest the possibility of a further role in hypertensive pregnancy.  相似文献   

15.
N-Acetylmannosamine (ManNAc) is the first committed intermediate in sialic acid metabolism. Thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. In prokaryotic organisms, UDP-N-acetylglucosamine (GlcNAc) 2-epimerase and GlcNAc-6-P 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc-6-P, respectively. We have purified for the first time native GlcNAc-6-P 2-epimerase from bacterial source to apparent homogeneity (1 200 fold) using Butyl-agarose, DEAE-FPLC and Mannose-6-P-agarose chromatography. By SDS/PAGE the pure enzyme showed a molecular mass of 38.4 +/- 0.2 kDa. The maximum activity was achieved at pH 7.8 and 37 degrees C. Under these conditions, the K(m) calculated for GlcNAc-6-P was 1.5 mM. The 2-epimerase activity was activated by Na(+) and inhibited by mannose-6-P but not mannose-1-P. Genetic analysis revealed high homology with bacterial isomerases. GlcNAc-6-P 2-epimerase from E. coli K92 is a ManNAc-inducible protein and is detected from the early logarithmic phase of growth. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes the biosynthesis of sialic acid, GlcNAc-6-P 2-epimerase plays a catabolic role. When E. coli grows using ManNAc as a carbon source, this enzyme converts the intracellular ManNAc-6-P generated into GlcNAc-6-P, diverting the metabolic flux of ManNAc to GlcNAc.  相似文献   

16.
In an attempt to confirm that high molecular weight renin was indeed true renin, we used a specific renin antibody and high performance liquid chromatography to determine characteristics of this protein. In mouse renin granules, renin was stored in a low molecular weight form of 38,000 daltons (LMW renin) and this molecular weight remained unchanged with application 20 mM of sodium tetrathionate. In the cytosol fraction of the renal cortex, LMW renin was partially converted to high molecular weight renin (HMW renin) of 65,000 daltons, as determined using tetrathionate. In both the LMW and HMW renin, enzymatic activity was completely neutralized by application of a specific antiserum of renin and an absolute amount of renin was identified by direct radioimmunoassay. The Km values of HMW and LMW renin were similar. Thus, LMW renin probably binds with renin binding substance and forms HMW renin.  相似文献   

17.
N-Acyl-d-Glucosamine 2-epimerase (AGE) catalyzes the reversible epimerization between N-acetyl-d-mannosamine (ManNAc) and N-acetyl-d-glucosamine (GlcNAc). Bacteroides ovatus ATCC 8483 shows 3 putative genes for AGE activity (BACOVA_00274, BACOVA_01795 and BACOVA_01816). The BACOVA_00274 gene encodes an AGE (BoAGE1) with strong similarity to the AGE previously characterized in Bacteroides fragilis. Interestingly, the BACOVA_01816 gene (BoAGE2) shares 57% identity with Anabaena sp. CH1 AGE, but has an extra 27-amino acid tag sequence in the N-terminal. When cloned and expressed in Escherichia coli Rosetta (DE3)pLys, BACOVA_01816 was able to convert ManNAc into GlcNAc and vice versa. It was stable over a broad range of pHs and its activity was enhanced by ATP (20 μM). The incubation with ATP stabilized its structure, raising its melting temperature by about 8 °C. In addition, the catalytic efficiency for ManNAc synthesis was higher than that for GlcNAc synthesis. These characteristics make BoAGE2 a promising biocatalyst for sialic acid production using cheap GlcNAc as starting material. BoAGE2 could be considered a Renin-binding Protein and its interaction with renin was studied for the first time in a prokaryotic AGE. Surprisingly, renin activated BoAGE2, an effect which is contrary to that described for mammalian AGE and unrelated with the unique N-terminal tag, since a mutant without this tag was also activated by renin. When BoAGE2 sequence was compared with other related (real and putative) AGE described in the databases, it was seen that AGE enzymes can be divided in 3 different groups. The relationship between these groups is also discussed.  相似文献   

18.
The X-ray crystallographic structure of N-acyl-d-glucosamine 2-epimerase (AGE) from porcine kidney, which has been identified to be a renin-binding protein (RnBP), was determined by the multiple isomorphous replacement method and refined at 2.0 A resolution with a final R-factor of 16.9 % for 15 to 2.0 A resolution data. The refined structure of AGE comprised 804 amino acid residues (one dimer) and 145 water molecules. The dimer of AGE had an asymmetric unit with approximate dimensions 46 Ax48 Ax96 A. The AGE monomer is composed of an alpha(6)/alpha(6)-barrel, the structure of which is found in glucoamylase and cellulase. One side of the AGE alpha(6)/alpha(6)-barrel structure comprises long loops containing five short beta-sheets, and contributes to the formation of a deep cleft shaped like a funnel. The putative active-site pocket and a possible binding site for the substrate N-acetyl-d-glucosamine (GlcNAc) were found in the cleft. The other side of the alpha(6)/alpha(6)-barrel comprises short loops and contributes to the dimer formation. At the dimer interface, which is composed of the short loops and alpha-helices of the subunits, five strong ion-pair interactions were observed, which play a major role in the dimer assembly. This completely ruled out the previously accepted hypothesis that the formation of the RnBP homodimer and RnBP-renin heterodimer requires the leucine zipper motif present in RnBP.  相似文献   

19.
Glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) from Anabaena cylindrica was inhibited by alanine, glycine, serine and aspartate. The effects of alanine and serine were uncompetitive with respect to glutamate, while those of glycine and asparatate were uncompetitive with respect to glutamate, while those of glycine and aspartate were non-competitive and mixed type respectively. Different pairs of amino acids and their various combinations caused a cumulative inhibition of the enzyme activity. Glutamine synthetase was also inhibited by ADP and AMP and both nucleotides affected the enzyme competitively with respect to ATP and non-competitively for glutamate. Inorganic pyrophosphate, between 2 and 3 mM, produced a very pronounced inhibiton of enzyme activity. The inhibition by PPi was uncompetitive for ATP. Various combinations of the adenine nucleotides, PPi and Pi exerted a cumulative inhibitory effect on the enzyme activity, as did the amino acids, in different combinations with either adenine nucleotides, PPi or Pi. The effects of the adenine nucleotides and the amino acids were more pronounced at higher concentrations of ammonia. Except for serine similar responses of these effectors were obtained with increasing concentrations of Mg2+. It is proposed that changes in the free concentrations of Mg2+ are important in energy-dependent regulation of the enzyme activity in this alga.  相似文献   

20.
Kinetics of renin inhibition by sodium houttuyfonate analogs   总被引:3,自引:0,他引:3  
A series of chemical analogs of sodium houttuynin, the major constituent in the volatile oil of the perennial plant Houttuynia cordata Thunb, were studied for in vitro inhibition of renin activity. At a reaction concentration of 0.196 mg/ml, each of the sodium houttuynin analogs (SHAs), viz., hexanoyl acetal sodium sulfite (SHA-C6), octanoyl acetal sodium sulfite (SHA-C8), decanoyl acetal sodium sulfite (SHA-C10), dodecanoyl acetal sodium sulfite (SHA-C12) and tetradecanoyl acetal sodium sulfite (SHA-C14), inhibited renin activity up to 34.37%, 44.03%, 79.33%, 83.04%, and 93.19% respectively. The IC50 values (the concentration of SHA that is required to reduce renin activity by 50%) of the most potent analogs were 273, 195, and 44 microM for SHA-C10, SHA-C12, and SHA-C14 respectively. Kinetic studies with SHA-14 indicated a linear mixed-type of enzyme inhibition with a Ki value of 45.35 microM. It was concluded that the SHAs constitute potentially useful ingredients for the formulation of antihypertensive products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号