首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The onset of lipid peroxidation within cellular membranes is associated with changes in their physicochemical properties and with the impairment of protein functions located in the membrane environment. This article provides current information on the origin and function of polyunsaturated fatty acids in nature, lipid peroxidation of cellular membranes: enzymatic (lipoxygenases) and non-enzymatic. The latest knowledge on in vivo biomarkers of lipid peroxidation including isoprostanes, isofurans and neuroprostanes are discussed. A further focus is placed on analytical methods for studying lipid peroxidation in membranes with emphasis in chemiluminescence and its origin, rod outer segments of photoreceptors, the effect of antioxidants, fatty acid hydroperoxides and lipid protein modifications. Since rhodopsin, the major integral protein of rod outer segments is surrounded by phospholipids highly enriched in docosahexaenoic acid, the author proposes the outer segments of photoreceptors as an excellent model to study lipid peroxidation using the chemiluminescence assay since these membranes contain the highest concentration of polyunsaturated fatty acids of any vertebrate tissue and are highly susceptible to oxidative damage.  相似文献   

2.
The biological benefits of certain carotenoids may be due to their potent antioxidant properties attributed to specific physico-chemical interactions with membranes. To test this hypothesis, we measured the effects of various carotenoids on rates of lipid peroxidation and correlated these findings with their membrane interactions, as determined by small angle X-ray diffraction approaches. The effects of the homochiral carotenoids (astaxanthin, zeaxanthin, lutein, beta-carotene, lycopene) on lipid hydroperoxide (LOOH) generation were evaluated in membranes enriched with polyunsaturated fatty acids. Apolar carotenoids, such as lycopene and beta-carotene, disordered the membrane bilayer and showed a potent pro-oxidant effect (>85% increase in LOOH levels) while astaxanthin preserved membrane structure and exhibited significant antioxidant activity (40% decrease in LOOH levels). These findings indicate distinct effects of carotenoids on lipid peroxidation due to membrane structure changes. These contrasting effects of carotenoids on lipid peroxidation may explain differences in their biological activity.  相似文献   

3.
The biological benefits of certain carotenoids may be due to their potent antioxidant properties attributed to specific physico-chemical interactions with membranes. To test this hypothesis, we measured the effects of various carotenoids on rates of lipid peroxidation and correlated these findings with their membrane interactions, as determined by small angle X-ray diffraction approaches. The effects of the homochiral carotenoids (astaxanthin, zeaxanthin, lutein, β-carotene, lycopene) on lipid hydroperoxide (LOOH) generation were evaluated in membranes enriched with polyunsaturated fatty acids. Apolar carotenoids, such as lycopene and β-carotene, disordered the membrane bilayer and showed a potent pro-oxidant effect (> 85% increase in LOOH levels) while astaxanthin preserved membrane structure and exhibited significant antioxidant activity (40% decrease in LOOH levels). These findings indicate distinct effects of carotenoids on lipid peroxidation due to membrane structure changes. These contrasting effects of carotenoids on lipid peroxidation may explain differences in their biological activity.  相似文献   

4.
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.  相似文献   

5.
The pineal hormone melatonin (N-acetyl, 5-methoxytryptamine) was recently accepted to act as an antioxidant under both in vivo and in vitro conditions. In this study, we examined the possible preventive effect of melatonin on ascorbate-Fe(2+) lipid peroxidation of rat testis microsomes and mitochondria. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:5 n6. The lipid peroxidation of testis microsomes or mitochondria produced a significant decrease of C20:4 n6 and C22:5 n6. The light emission (chemiluminescence) used as a marker of lipid peroxidation was similar in both kinds of organelles when the control and peroxidized groups were compared. Both long chain polyunsaturated fatty acids were protected when melatonin was incorporated either in microsomes or mitochondria. The melatonin concentration required to inhibit by 100% the lipid peroxidation process was 5.0 and 1.0mM in rat testis microsomes and mitochondria, respectively. IC 50 values calculated from the inhibition curve of melatonin on the chemiluminescence rates were higher in microsomes (4.98 mM) than in mitochondria (0.67 mM). The protective effect observed by melatonin in rat testis mitochondria was higher than that observed in microsomes which could be explained if we consider that the sum of C20:4 n6+C22:5 n6 in testis microsomes is two-fold greater than present in mitochondria.  相似文献   

6.
Eighty years ago, Burr and Burr, introduced for the first time the concept of essential fatty acids. Now is very well known that requirements for polyunsaturated fatty acids PUFAs can not be met by de novo metabolic processes within mammalian tissues. Animals are absolutely dependent on plants for providing the two major precursors of the n-6 and n-3 fatty acids, C18:2n-6; linoleic and C18:3n-3; α-linolenic acids. In animal tissues these precursors are transformed to fatty acids containing three to six double bonds. During the last four decades the interest in polyunsaturated fatty acids has augmented manifolds, and the number of published studies is rising each year. The current impetus for this interest has been mainly the observation that PUFAs and their metabolites have several physiological roles including: energy provision, membrane structure, cell signaling and regulation of gene expression. In addition the observation that PUFAs are targets of lipid peroxidation opens a new important area of investigation. Melatonin, the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. In addition the two key pineal biochemical functions, lipoxygenation and melatonin synthesis may be synergistically regulated by the status of n-3 essential fatty acids. At the retina level, free radicals may preferentially react with the membrane polyunsaturated fatty acids leading to the release of lipoperoxide radicals. These lipoperoxides can induce oxidative stress linked to membrane lysis, damage to neuronal membranes may be related to alteration of visual function.  相似文献   

7.
Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system.  相似文献   

8.
We have studied the generation of volatile hydrocarbons by fatty acid-modified L1210 leukemia cells in tissue culture as a measure of lipid peroxidation. There was considerable generation of ethane, and this was dependent on cell number and Fe2+ concentration; it was eliminated by antioxidants and augmented by ascorbic acid. The assay was sensitive and reproducible; ethane was detected when as little as 0.03% of the cellular n-3 (omega-3) fatty acids were peroxidized. To gain further understanding we used a lipid modification model that allows study of cells enriched with fatty acids of different degrees of unsaturation. The quantity of ethane generated was greatest by cells modified with fatty acids of the n-3 family, and there was a high direct correlation of percentage of n-3 fatty acids contained in cellular lipids with peroxidation as measured by ethane generation. Ethane generation was more sensitive in detecting peroxidation than loss of polyunsaturated fatty acids. We conclude that lipid-supplemented leukemic cells produce ethane, and that the rate of generation is a sensitive, quantitative, and highly useful measure of lipid peroxidation when small amounts of iron are present.  相似文献   

9.
There is no general agreement yet on the antioxidant effect of pineal indoles against lipid peroxidation. Accordingly, the main goal of the present work was to study the antioxidant activity of melatonin (MLT), N-acetylserotonin (NAS), 5-HO-tryptophan (5HO-TRP) and 5-methoxytryptamine (5MTP) in two different lipid systems with high content of polyunsaturated fatty acids (PUFAs): triglycerides (rich in 20:5 n-3, 22:6 n-3) dissolved in chloroform and sonicated liposomes made of retinal lipids (rich in 22:6 n-3). In the triglyceride-chloroform-system the peroxidation reaction was initiated by cumene hydroperoxide (CHP) whereas liposomes were peroxidized with Fe(2+). The techniques employed at the present work were: (1) TBARS production, (2) DPPH assay, (3) determination of conjugated dienes production and (4) analysis of fatty acid profile by GC-MS. Butylated hydroxytoluene (BHT) was employed as a reference because of its well known antioxidant capacity. Our results showed that MLT and 5MTP were unable to protect PUFAs against lipid peroxidation in both systems, whereas NAS and 5HO-TRP were better antioxidants that BHT in the triglyceride-system but ineffective in the liposome-system. We conclude that the antioxidant behaviour of pineal indoles depends not only on their functional groups but also on the assay system and could be explained by the polar paradox theory.  相似文献   

10.
Peroxidation of lipids, particularly polyunsaturated fatty acid residues (PUFA) of phospholipids and cholesterol esters, is a process of marked implications: it shortens the shelf-life of food and drugs, it causes fragmentation of DNA, it damages cellular membranes and it promotes the genesis of many human diseases. Much effort is therefore devoted to a search for "potent antioxidants", both synthetic and from natural sources, mostly plants. This, in turn, requires a reliable, simple, preferably high throughput assay of the activity of alleged antioxidants. The most commonly used assays are based on measurements of the total antioxidant capacity (TAC) of a solution, as evaluated either by determining the rate of oxidation of the antioxidant or by measuring the protection of an easily determined indicator against oxidation by the antioxidants. The commonly used assays utilized for ranking antioxidants share three common problems: (i) They usually evaluate the effects of those antioxidants that quench free radicals, which constitute only a part of the body's antioxidative network, in which enzymes play the central role. (ii) Both the capacity and potency of antioxidants, as obtained by various methods, do not necessarily correlate with each other. (iii) Most estimates are based on methods conducted in solution and are therefore not necessarily relevant to processes that occur at the lipid-water interfaces in both membranes and micro emulsions (e.g. lipoproteins). Given this "state of art", many researchers, including us, try to develop a method based on the formation of hydroperoxides (LOOH) upon peroxidation of PUFA in lipoproteins or in model membranes, such as liposomes. In these systems, as well as in lipoproteins, the most apparent effect of antioxidants is prolongation of the lag time preceding the propagation of a free radical chain reaction. In fact, under certain conditions both water soluble antioxidants (e.g. vitamin C and urate) and the lipid soluble antioxidant tocopherol (vitamin E), promote or even induce peroxidation. Based on the published data, including our results, we conclude that terms such as 'antioxidative capacity' or 'antioxidative potency' are context-dependent. Furthermore, criteria of the efficacy of antioxidants based on oxidation in solution are not necessarily relevant to the effects of antioxidants on peroxidation in biological systems or model lipid assemblies, because the latter processes occur at water/lipid interfaces. We think that evaluation of antioxidants requires kinetic studies of the biomarker used and that the most relevant characteristic of 'oxidative stress' in the biological context is the kinetics of ex vivo peroxidation of lipids. We therefore propose studying the kinetics of lipid-peroxidation in the absence of the studied antioxidant and in its presence at different antioxidant concentrations. These protocols mean that antioxidants are assayed by methods commonly used to evaluate oxidative stress. The advantage of such evaluation is that it enables quantization of the antioxidants' efficacy in a model of relevance to biological systems. In view of the sensitivity of the lag time preceding peroxidation, we propose studying how much antioxidant is required to double the lag observed prior to rapid peroxidation. The latter quantity (C(2lag)) can be used to express the strength of antioxidants in the relevant system (e.g. LDL, serum or liposomes).  相似文献   

11.
Vitamin E, antioxidant and nothing more   总被引:2,自引:0,他引:2  
All of the naturally occurring vitamin E forms, as well as those of synthetic all-rac-alpha-tocopherol, have relatively similar antioxidant properties, so why does the body prefer alpha-tocopherol as its unique form of vitamin E? We propose the hypothesis that all of the observations concerning the in vivo mechanism of action of alpha-tocopherol result from its role as a potent lipid-soluble antioxidant. The purpose of this review then is to describe the evidence for alpha-tocopherol's in vivo function and to make the claim that alpha-tocopherol's major vitamin function, if not only function, is that of a peroxyl radical scavenger. The importance of this function is to maintain the integrity of long-chain polyunsaturated fatty acids in the membranes of cells and thus maintain their bioactivity. That is to say that these bioactive lipids are important signaling molecules and that changes in their amounts, or in their loss due to oxidation, are the key cellular events that are responded to by cells. The various signaling pathways that have been described by others to be under alpha-tocopherol regulation appear rather to be dependent on the oxidative stress of the cell or tissue under question. Moreover, it seems unlikely that these pathways are specifically under the control of alpha-tocopherol given that various antioxidants other than alpha-tocopherol and various oxidative stressors can manipulate their responses. Thus, virtually all of the variation and scope of vitamin E's biological activity can be seen and understood in the light of protection of polyunsaturated fatty acids and the membrane qualities (fluidity, phase separation, and lipid domains) that polyunsaturated fatty acids bring about.  相似文献   

12.
The degradation of phospholipids containing polyunsaturated fatty acids, termed peroxidation, poses a constant challenge to membranes lipid composition and function. Phospholipids with saturated (e.g. PC 16:0/16:0) and monounsaturated fatty acids (e.g. PC 16:0/18:1) are some of the most common phospholipids found in membranes and are generally not peroxidisable. The present experiments show that these non-peroxidisable phospholipids, when present in liposomes with peroxidisable phospholipids (i.e. those containing polyunsaturated fatty acids) such as PC 16:0/18:2 and Soy PC, produce an inhibitory effect on rates of peroxidation induced by ferrous-iron. This inhibitory effect acts to extend the duration of the lag phase by several-fold. If present in natural systems, this action could enhance the capacity of conventional antioxidant mechanisms in membranes. The results of this preliminary work suggest that non-peroxidisable phospholipids may exert an antioxidant-like action in membranes.  相似文献   

13.
It has been reported that glutamate decreased the intracellular glutathione (GSH) concentration and thereby induced cell death in C6 rat glioma cells. Polyunsaturated fatty acids such as arachidonic acid, gamma-linolenic acid, and linoleic acid enhanced lipid peroxidation promoting 8-hydroxy-2'-deoxyguanosine (8-OH-dG) formation under the glutamate-induced GSH-depletion. The enhancement of lipid peroxidation by polyunsaturated fatty acids was species-dependent. Some antioxidants capable of scavenging oxygen and lipid radicals and some iron or copper scavengers inhibited both the lipid peroxidation and the 8-OH-dG formation, consequently protecting against cell death induced by glutamate-induced GSH depletion. These results suggest that GSH depletion caused by glutamate induces lipid peroxidation and consequently 8-OH-dG formation and that polyunsaturated fatty acids enhance lipid peroxidation associated with mediated 8-OH-dG formation through a chain reaction.  相似文献   

14.
The present study investigates the effect of ascorbate on red cell lipid peroxidation. At a concentration between 0.2 mmol-20 mmol/l ascorbic acid reduces hydrogen peroxide-induced red blood cell lipid peroxidation resulting in a marked decrease in ethane and pentane production as well as in haemolysis. Ascorbic acid also shows an antioxidant effect on chelated iron-catalyzed hydrogen peroxide-induced peroxidation of erythrocyte membranes. At a concentration of 10 mmol/l ascorbic acid totally inhibits oxidative break-down of polyunsaturated fatty acids by radicals originating from hydrogen peroxide.

Our results indicate that ascorbate at the chosen concentration has an antioxidant effect on red blood cell lipid peroxidation.  相似文献   

15.
In vitro enzymatic and non-enzymatic polyunsaturated fatty acid peroxidation was significantly inhibited in a dose dependent manner by purified anthocyanin, a deep-red colour pigment from carrot cell culture. The kinetics showed that anthocyanin is a non-competitive inhibitor of lipid peroxidation. Anthocyanin has been found to be a potent antioxidant compared to classical antioxidants such as butylated hydroxy anisole (BHA), butylated hydroxy toulene (BHT) and alpha tocopherol. This natural agent, in addition to imparting colour to the food, might prevent autooxidation of lipids as well as lipid peroxidation in biological systems.  相似文献   

16.
The ways in which dietary polyunsaturated fats and antioxidants affect the balance between activation and detoxification of environmental precarcinogens is discussed, with particular reference to the polycyclic aromatic hydrocarbon benzo(a)pyrene. The structure and composition of membranes and their susceptibility to peroxidation is dependent on the polyunsaturated fatty acid (PUFA) content of the cell and its antioxidant status, both of which are determined to a large degree by dietary intake of these compounds. An increase in the PUFA content of membranes stimulates the oxidation of precarcinogens to reactive intermediates by affecting the configuration and induction of membrane-bound enzymes (e.g., the mixed-function oxidase system and epoxide hydratase); providing increased availability of substrates (hydroperoxides) for peroxidases that cooxidise carcinogens (e.g., prostaglandin synthetase and P-450 peroxidase); and increasing the likelihood of direct activation reactions between peroxyl radicals and precarcinogens. Antioxidants, on the other hand, protect against lipid peroxidation, scavenge oxygen-derived free radicals and reactive carcinogenic species. In addition some synthetic antioxidants exert specific effects on enzymes, which results in increased detoxification and reduced rates of activation. The balance between dietary polyunsaturated fats, antioxidants and the initiation of carcinogenesis is discussed in relation to animal models of chemical carcinogenesis and the epidemiology of human cancer.  相似文献   

17.
Lipid peroxidation in erythrocytes   总被引:11,自引:0,他引:11  
Erythrocytes might be expected to be highly susceptible to peroxidation. Their membranes are rich in polyunsaturated fatty acids; they are continuously exposed to high concentrations of oxygen; and they contain a powerful transition metal catalyst. In fact, autoxidation is held in check in vivo by extremely efficient protective antioxidant mechanisms. These involve cellular enzymes such as superoxide dismutase and glutathione peroxidase, as well as vitamin E; but they mainly reflect effective structural compartmentalisation. This review surveys mechanisms which lead to red cell lipid autoxidation and the role of haemoglobin in these processes. The influence of haemoglobinopathies, of lipid composition and of abnormalities in antioxidant mechanisms induced by exogenous oxidant stress is also considered.  相似文献   

18.
Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipid peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation.  相似文献   

19.
Non-enzymatic and enzymatically-driven lipid peroxidation processes were studied in rat liver nuclei and isolated nuclear membranes, by evaluating the formation of thiobarbituric acid-chromophore, free malondialdehyde, lipofuscin-like pigments, and the degradation of polyunsaturated fatty acids of the nuclear membrane lipids. The results obtained show that: (1) both non-enzymatic and enzymatically driven lipid peroxidation processes are operative in cell nuclei and isolated nuclear membranes; (2) only for isolated nuclear membranes, a good qualitative and up to a great extent quantitative correlation between malondialdehyde and lipofuscin-like pigment formation was obtained; (3) there is a qualitative but not quantitative correlation between malondialdehyde formation and polyunsaturated fatty acid degradation; (4) lipid peroxidation processes in isolated nuclear membranes and intact nuclei have an essentially identical kinetic behaviour. No statistical differences in the relative increases in the concentrations of malondialdehyde and lipofuscin-like pigments or in the degradation of polyunsaturated fatty acids were obtained, when the two systems were compared, except in the presence of NADPH-ADP-Fe3+, which induced a significantly larger degradation of polyunsaturated fatty acids in isolated nuclear membranes than in intact nuclei, and (5) no malondialdehyde-DNA fluorescent adduct formation was observed in any of the experimental groups studied, as inferred from the characteristics of the fluorescent spectra of lipofuscin-like pigments extracted from incubated nuclear preparations.  相似文献   

20.
Although oxygen is essential for aerobic organisms, it also forms potentially harmful reactive oxygen species. For its simplicity, easy manipulation, and cultivation conditions, yeast is used as an attractive model in oxidative stress research. However, lack of polyunsaturated fatty acids in yeast membranes makes yeast unsuitable for research in the field of lipid peroxidation. Therefore, we have constructed a yeast strain expressing a Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This yeast strain expresses the heterologous desaturase in an active form and, consequently, produces Delta9/Delta12 polyunsaturated fatty acids under inducing conditions. The functional expression of the heterologous desaturase did not affect cellular morphology or growth, indicating no general adverse effect on cellular physiology. However, the presence of polyunsaturated fatty acids changed the yeast's sensitivity to oxidative stress induced by addition of paraquat, tert-butylhydroperoxide, and hydrogen peroxide. This difference in sensitivity to the latter was followed by the formation of 4-hydroxy-2-nonenal, one of the end products of linoleic fatty acid peroxidation, which is known to play a role in cell growth control and signaling. Here we show that this yeast strain conditionally expressing the Delta12 desaturase gene provides a novel and well-defined eukaryotic model in lipid peroxidation research. Its potential to investigate the molecular basis of responses to oxidative stress, in particular the involvement of reactive aldehydes derived from fatty acid peroxidation, especially 4-hydroxy-2-nonenal, will be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号