首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 907 毫秒
1.
ATP-binding cassette (ABC) transporters in human metabolism and diseases   总被引:12,自引:0,他引:12  
The ATP-binding cassette (ABC) superfamily of active transporters involves a large number of functionally diverse transmembrane proteins. They transport a variety of substrates including amino acids, lipids, inorganic ions, peptides, saccharides, metals, drugs, and proteins. The ABC transporters not only move a variety of substrates into and out of the cell, but also are also involved in intracellular compartmental transport. Energy derived from the hydrolysis of ATP is used to transport the substrate across the membrane against a concentration gradient. The typical ABC transporter consists of two transmembrane domains and two nucleotide-binding domains. Defects in 14 of these transporters cause 13 genetic diseases (cystic fibrosis, Stargardt disease, adrenoleukodystrophy, Tangier disease, etc.). Mutations in three genes affect lipid levels expressively. Mutations in ABCA1 cause severe HDL deficiency syndromes called Tangier disease and familial high-density lipoprotein deficiency, which are characterized by a severe deficiency or absence of high-density lipoprotein in the plasma. Two other ABCG transporters, ABCG5 and ABCG8, mutations of which cause sitosterolemia, have been identified. The affected individuals absorb and retain plant sterols, as well as shellfish sterols.  相似文献   

2.
3.
ATP-binding cassette (ABC) transporters form a large family of transmembrane proteins that facilitate the transport of specific substrates across membranes in an ATP-dependent manner. Transported substrates include lipids, lipopolysaccharides, amino acids, peptides, proteins, inorganic ions, sugars and xenobiotics. Despite this broad array of substrates, the physiological substrate of many ABC transporters has remained elusive. ABC transporters are divided into seven subfamilies, A-G, based on sequence similarity and domain organization. Here we review the role of members of the ABCG subfamily in human disease and how the identification of disease genes helped to determine physiological substrates for specific ABC transporters. We focus on the recent discovery of mutations in ABCG2 causing hyperuricemia and gout, which has led to the identification of urate as a physiological substrate for ABCG2.  相似文献   

4.
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P4-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P4-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P4-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

5.
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

6.
李光  王义权 《遗传》2006,28(8):1015-1022
ABC(ATP-binding cassette)基因家族编码膜蛋白,其成员负责多种物质的跨膜运输。基于氨基酸序列的同源性,人的48个ABC成员被分为7个亚家族:ABCA~ABCG。与其他亚家族相比,ABCA基因编码的蛋白具有独特的拓扑结构,并且其家族成员在两栖动物和哺乳动物分化之后各发生过一次大的扩展(expanding)。基因结构分析发现这两次扩展均是通过基因倍增实现的,这些倍增的产物在啮齿目和食肉目中得到保留,而在灵长目中却有一半变成假基因或被删除。ABCA成员主要负责不同组织器官脂类和胆固醇的跨膜运输,部分成员的突变与疾病相关。  相似文献   

7.
Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (> 250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.  相似文献   

8.
ABC A-subfamily transporters: structure, function and disease   总被引:7,自引:0,他引:7  
ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related "full-size" transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily.  相似文献   

9.
Role of ABCG1 and other ABCG family members in lipid metabolism   总被引:10,自引:0,他引:10  
  相似文献   

10.
Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1   总被引:11,自引:0,他引:11  
Plasma levels of high-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) are inversely correlated with the risk of cardiovascular disease. One major atheroprotective mechanism of HDL and apoA-I is their role in reverse cholesterol transport, i.e., the transport of excess cholesterol from foam cells to the liver for secretion. The ATP-binding cassette transporters ABCA1 and ABCG1 play a pivotal role in this process by effluxing lipids from foam cells to apoA-I and HDL, respectively. In the liver, ABCA1 activity is one rate-limiting step in the formation of HDL. In macrophages, ABCA1 and ABCG1 prevent the excessive accumulation of lipids and thereby protect the arteries from developing atherosclerotic lesions. However, the mechanisms by which ABCA1 and ABCG1 mediate lipid removal are still unclear. Particularly, three questions remain controversial and are discussed in this review: (1) Do apoA-I and HDL directly interact with ABCA1 and ABCG1, respectively? (2) Does cholesterol efflux involve retroendocytosis of apoA-I or HDL? (3) Which lipids are directly transported by ABCA1 and ABCG1?  相似文献   

11.
ATP-binding cassette (ABC) transporters form a large superfamily of transporters that bind and hydrolyze ATP to transport various molecules across limiting membranes or into vesicles. The ABCA subfamily members are thought to transport lipid materials. ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids via lamellar granules. ABCA12 is considered to transport lipids including ceramides to form extracellular lipid layers in the stratum corneum of the epidermis, which is essential for skin barrier function. ABCA12 mutations are known to underlie the three major types of autosomal recessive congenital ichthyoses: harlequin ichthyosis, lamellar ichthyosis and congenital ichthyosiform erythroderma. ABCA12 mutations result in defective lipid transport via lamellar granules in the keratinocytes, leading to ichthyosis phenotypes from malformation of the stratum corneum lipid barrier. Studies on ABCA12-deficient bioengineered models have revealed that lipid transport by ABCA12 is required for keratinocyte differentiation and epidermal morphogenesis. Defective lipid transport due to loss of ABCA12 function leads to the accumulation of intracellular lipids, including glucosylceramides and gangliosides, in the epidermal keratinocytes. The accumulation of gangliosides seems to result in the apoptosis of Abca12−/− keratinocytes. It was reported that AKT activation occurs in Abca12−/− granular-layer keratinocytes, which suggests that AKT activation serves to prevent the cell death of Abca12−/− keratinocytes. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

12.
The human ATP-binding cassette (ABC) transporter superfamily.   总被引:2,自引:0,他引:2  
The transport of specific molecules across lipid membranes is an essential function of all living organisms and a large number of specific transporters have evolved to carry out this function. The largest transporter gene family is the ATP-binding cassette (ABC) transporter superfamily. These proteins translocate a wide variety of substrates including sugars, amino acids, metal ions, peptides, and proteins, and a large number of hydrophobic compounds and metabolites across extra- and intracellular membranes. ABC genes are essential for many processes in the cell, and mutations in these genes cause or contribute to several human genetic disorders including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response. Characterization of eukaryotic genomes has allowed the complete identification of all the ABC genes in the yeast Saccharomyces cerevisiae, Drosophila, and C. elegans genomes. To date, there are 48 characterized human ABC genes. The genes can be divided into seven distinct subfamilies, based on organization of domains and amino acid homology. Many ABC genes play a role in the maintenance of the lipid bilayer and in the transport of fatty acids and sterols within the body. Here, we review the current knowledge of the human ABC genes, their role in inherited disease, and understanding of the topology of these genes within the membrane.  相似文献   

13.
The cell envelope of Gram-negative bacteria is composed of an inner membrane, outer membane, and an intervening periplasmic space. How the outer membrane lipids are trafficked and assembled there, and how the asymmetry of the outer membrane is maintained is an area of intense research. The Mla system has been implicated in the maintenance of lipid asymmetry in the outer membrane, and is generally thought to drive the removal of mislocalized phospholipids from the outer membrane and their retrograde transport to the inner membrane. At the heart of the Mla pathway is a structurally unique ABC transporter complex in the inner membrane, called MlaFEDB. Recently, an explosion of cryo-EM studies has begun to shed light on the structure and lipid translocation mechanism of MlaFEDB, with many parallels to other ABC transporter families, including human ABCA and ABCG, as well as bacterial lipopolysaccharide and O-antigen transporters. Here we synthesize information from all available structures, and propose a model for lipid trafficking across the cell envelope by MlaFEDB.  相似文献   

14.
15.
Human ATP-binding cassette (ABC) transporters comprise a family of 48 membrane-spanning transport proteins, many of which are associated with genetic diseases or multidrug resistance of cancers. In this study, we present a comprehensive approach for the cloning, expression, and purification of human ABC transporters in the yeast Pichia pastoris. We analyzed the expression of 25 proteins and demonstrate that 11 transporters, including ABCC3, ABCB6, ABCD1, ABCG1, ABCG4, ABCG5, ABCG8, ABCE1, ABCF1, ABCF2, and ABCF3, were expressed at high levels comparable to that of ABCB1 (P-glycoprotein). As an example of the purification strategy via tandem affinity chromatography, we purified ABCC3 (MRP3) whose role in the transport of anticancer drugs, bile acids, and glucuronides has been controversial. The yield of ABCC3 was 3.5 mg/100 g of cells in six independent purifications. Purified ABCC3, activated with PC lipids, exhibited significant ATPase activity with a Vmax of 82 +/- 32 nmol min-1 mg-1. The ATPase activity was stimulated by bile acids and glucuronide conjugates, reaching 170 +/- 28 nmol min-1 mg-1, but was not stimulated by a variety of anticancer drugs. The glucuronide conjugates ethinylestradiol-3-glucuronide and 17beta-estradiol-17-glucuronide stimulated the ATPase with relatively high affinities (apparent Km values of 2 and 3 microM, respectively) in contrast to bile acids (apparent Km values of >130 microM), suggesting that glucuronides are the preferred substrates for this transporter. Overall, the availability of a purification system for the production of large quantities of active transporters presents a major step not only toward understanding the role of ABCC3 but also toward future structure-function analysis of other human ABC transporters.  相似文献   

16.
Regulation of transbilayer plasma membrane phospholipid asymmetry   总被引:10,自引:0,他引:10  
Lipids in biological membranes are asymmetrically distributed across the bilayer; the amine-containing phospholipids are enriched on the cytoplasmic surface of the plasma membrane, while the choline-containing and sphingolipids are enriched on the outer surface. The maintenance of transbilayer lipid asymmetry is essential for normal membrane function, and disruption of this asymmetry is associated with cell activation or pathologic conditions. Lipid asymmetry is generated primarily by selective synthesis of lipids on one side of the membrane. Because passive lipid transbilayer diffusion is slow, a number of proteins have evolved to either dissipate or maintain this lipid gradient. These proteins fall into three classes: 1) cytofacially-directed, ATP-dependent transporters ("flippases"); 2) exofacially-directed, ATP-dependent transporters ("floppases"); and 3) bidirectional, ATP-independent transporters ("scramblases"). The flippase is highly selective for phosphatidylserine and functions to keep this lipid sequestered from the cell surface. Floppase activity has been associated with the ABC class of transmembrane transporters. Although they are primarily nonspecific, at least two members of this class display selectivity for their substrate lipid. Scramblases are inherently nonspecific and function to randomize the distribution of newly synthesized lipids in the endoplasmic reticulum or plasma membrane lipids in activated cells. It is the combined action of these proteins and the physical properties of the membrane bilayer that generate and maintain transbilayer lipid asymmetry.  相似文献   

17.
Two ATP-binding cassette (ABC) proteins, ABCG5 and ABCG8, have recently been associated with the accumulation of dietary cholesterol in the sterol storage disease sitosterolemia. These two 'half-transporters' are assumed to dimerize to form the complete sitosterol transporter which reduces the absorption of sitosterol and related molecules in the intestine by pumping them back into the lumen. Although mutations altering ABCG5 and ABCG8 are found in affected patients, no functional demonstration of sitosterol transport has been achieved. In this study, we investigated whether other ABC transporters implicated in lipid movement and expressed in tissues with a role in sterol synthesis and absorption, might also be involved in sitosterol transport. Transport by the multidrug resistance P-glycoprotein (P-gp; Abcb1), the multidrug resistance-associated protein (Mrp1; Abcc1), the breast cancer resistance protein (Bcrp; Abcg2) and the bile salt export pump (Bsep; Abcb11) was assessed using several assays. Unexpectedly, none of the candidate proteins mediated significant sitosterol transport. This has implications for the pathology of sitosterolemia. In addition, the data suggest that otherwise broad-specific ABC transporters have acquired specificity to exclude sitosterol and related sterols like cholesterol presumably because the abundance of cholesterol in the membrane would interfere with their action; in consequence, specific transporters have evolved to handle these sterols.  相似文献   

18.
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.  相似文献   

19.
Sharom FJ 《IUBMB life》2011,63(9):736-746
The rapid movement of polar lipids from one membrane leaflet to the other is facilitated by lipid flippases or translocases. Although their activity was first observed over 30 years ago, the structures, physiological roles, and molecular mechanisms of this group of proteins remain enigmatic. Lipid flippases maintain membrane lipid asymmetry, and in eukaryotes they are also intimately involved in membrane budding and vesicle trafficking. The ATP-dependent flippases are members of well-characterized protein families, whose other members transport nonlipid substrates across cell membranes. The P(4)-type ATPases carry out the inward translocation of phospholipids, and various ABC transporters are involved in outward lipid movement. The ATP-independent flippases move lipid substrates in both directions between membrane leaflets. With only a few exceptions, the molecular identity of these proteins is still unknown, despite their involvement in key biosynthetic pathways in both bacteria and eukaryotes. This review provides an overview of the different classes of flippases, and summarizes recent progress in their identification and functional characterization. The possible mechanisms of action of lipid flippases are discussed, and future directions explored.  相似文献   

20.
The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporterlow phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号