首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rooibos tea (Aspalathus linearis) was extracted by refluxing with water and 75% ethanol as a solvent. Antioxidant activity and protective effect on DNA strand scission were investigated by using different antioxidant assay systems and DNA strand nicking assay, respectively. 75% Ethanol extract has higher content of total soluble phenolics and flavonoid than water extract. Antioxidant activities such as hydrogen donating capacity and scavenging activity of hydrogen peroxide were higher in 75% ethanol extract than in water extract except the rate constant with hydroxyl radical. Peroxyl radical induced DNA strand scission was prevented by both 75% ethanol and water extract and hydroxyl radical induced DNA strand scission was not. This result indicates that total soluble phenolics, specially flavonoid, of Rooibos tea are responsible for several kinds of antioxidant activities and preventive activity on peroxyl radical induced DNA strand scission.  相似文献   

2.
The DNA strand scission activities of three positional isomers of Fe(III) meso-tetra(N-methylpyridyl)porphine (Fe(III)TnMPyP, where n = 2, 3 or 4) have been investigated using PM2 DNA as a substrate. A significant degree of strand scission activity was noted in the presence of oxygen without the addition of a reducing agent. This activity was probably due to the presence of reducing agents in the agarose gels used to separate the DNA forms, as higher levels were recorded with reducing agents added to the strand scission mixture. The relative order of strand scission activity in the absence of added reducing agents was found to be Fe(III)T2MPyP greater than Fe(III)T4MPyP greater than Fe(III)T3MPyP. Comparative studies were also made with Fe(II)bleomycin. High concentrations of some reducing agents inhibited strand scission. Oxygen was required to produce optimal strand scission activity for all three porphyrins. It was also noted from spectroscopic measurements that the reduced porphyrins were degraded in the presence of oxygen. Studies with a series of potential strand scission inhibitors suggest that hydrogen peroxide and possibly peroxy radicals are intermediates in the reaction mechanism, while diffusible hydroxyl radicals appear to be excluded. However, superoxide radicals cannot be ruled out.  相似文献   

3.
Selective strand scission by intercalating drugs at DNA bulges   总被引:4,自引:0,他引:4  
A bulge is an extra, unpaired nucleotide on one strand of a DNA double helix. This paper describes bulge-specific strand scission by the DNA intercalating/cleaving drugs neocarzinostatin chromophore (NCS-C), bleomycin (BLM), and methidiumpropyl-EDTA (MPE). For this study we have constructed a series of 5'-32P end labeled oligonucleotide duplexes that are identical except for the location of a bulge. In each successive duplex of the series, a bulge has been shifted stepwise up (from 5' to 3') one strand of the duplex. Similarly, in each successive duplex of the series, sites of bulge-specific scission and protection were observed to shift in a stepwise manner. The results show that throughout the series of bulged duplexes NCS-C causes specific scission at a site near a bulge, BLM causes specific scission at a site near a bulge, and MPE-Fe(II) causes specific scission centered around the bulge. In some sequences, NCS-C and BLM each cause bulge-specific scission at second sites. Further, bulged DNA shows sites of protection from NCS-C and BLM scission. The results are consistent with a model of bulged DNA with (1) a high-stability intercalation site at the bulge, (2) in some sequences, a second high-stability intercalation site adjacent to the first site, and (3) two sites of relatively unstable intercalation that flank the two stable intercalation sites. On the basis of our results, we propose a new model of the BLM/DNA complex with the site of intercalation on the 3' side (not in the center) of the dinucleotide that determines BLM binding specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Resveratrol (1, 3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes and other food products, is known as an antioxidant and cancer chemopreventive agent. However, 1 was shown to induce genotoxicity through a high frequency of micronucleus and sister chromatid exchange in vitro and DNA-cleaving activity in the presence of Cu(II). The present study was designed to explore the structure-activity relationship of 1 in DNA strand scission and to characterize the substrate specificity for Cu(II) and DNA binding. When pBR322DNA was incubated with 1 or its analogues differing in the number and positions of hydroxyl groups in the presence of Cu(II), the ability of 4-hydroxystilbene analogues to induce DNA strand scission is much stronger than that of 3-hydroxy analogues. The high binding affinity with both Cu(II) and DNA was also observed by 4-hydroxystilbene analogues. The reduction of Cu(II) which is essential for activation of molecular oxygen proceeded by addition of 1 to the solution of the Cu(II)-DNA complex, while such reduction was not observed with the addition of isoresveratrol, in which the 4-hydroxy group of 1 is changed to the 3-position. The results show that the 4-hydroxystilbene structure of 1 is a major determinant of generation of reactive oxygen species that was responsible for DNA strand scission.  相似文献   

5.
Neocarzinostatin (NCS), an antitumor protein antibiotic that causes strand scissions of DNA both in vitro and in vivo, is shown to lower the template activity of DNA for DNA polymerase Iin vitro. There is a correlation between the extent of strand scission and the degree of inhibition, maximal inhibition of the polymerase reaction being obtained under conditions promoting maximal strand scission. These effects can be related to the concentrations of NCS and of 2-mercaptoethanol and are maximized by pretreatment of the DNA with drug. Results from polymerase assays in which the amount of drug-treated DNA template was varied at a constant level of the enzyme suggest that the sites associated with NCS-induced breaks are nonfunctional in DNA synthesis but bind DNA polymerase I. The binding of the enzyme to the inactive sites is further confirmed using [203 Hg] polymerase. It is shown that the lowering of the template activity of DNA by NCS under conditions of strand scission is due to the generation of a large number of inactive sites that block, competitively, the binding of DNA polymerase to the active sites on the template. Furthermore, the inhibition of DNA synthesis, which depends on the extent of strand breakage and on the relative amounts of template and enzyme, can be reversed by increasing the levels of template or polymerase. The finding that DNA synthesis directed by poly [d(A-T)] is much more sensitive to NCS than that primed by poly [d(G-C)] suggests that the drug preferentially interacts at regions containing adenine and/or thymine residues.  相似文献   

6.
Stoichiometry of DNA strand scission and aldehyde formation by bleomycin   总被引:2,自引:0,他引:2  
A colorimetric assay of DNA breakage by bleomycin has been standardized and indicates that strand scission is stoichiometric with the formation of a single equivalent of an aldehyde compound consisting of base plus deoxyribose carbons 1' to 3'. Both strand scission and aldehyde formation require the presence of O2. An alternate DNA lesion inflicted by bleomycin, alkali labilization, is O2-dependent, as is the accompanying release of free bases.  相似文献   

7.
Analysis of products formed during bleomycin-mediated DNA degradation   总被引:7,自引:0,他引:7  
By the use of DNA, copolymers of defined nucleotide composition, and a synthetic dodecanucleotide having putative bleomycin cleavage sites in proximity to the 5'- and 3'-termini, the products formed concomitant with DNA strand scission have been isolated and subjected to structural identification and quantitation via direct comparison with authentic synthetic samples. The products of DNA strand scission by Fe(II)-bleomycin include oligonucleotides having each of the four possible nucleoside 3'-(phosphoro-2'-O-glycolates) at their 3'-termini, as well as the four possible base propenals. At least for 3-(adenin-9'-yl)propenal and 3-(thymin-1'-yl)propenal, the products formed were exclusively of the trans configuration.  相似文献   

8.
Antioxidant activity of extract from Polygonum aviculare L   总被引:1,自引:0,他引:1  
Hsu CY 《Biological research》2006,39(2):281-288
Free radicals induce numerous diseases by lipid peroxidation, protein peroxidation, and DNA damage. It has been reported that numerous plant extracts have antioxidant activities to scavenge free radicals. Whether Polygonum aviculare L. (Polygonaceae) has antioxidant activity is unknown. In this study, dried Polygonum aviculare L. was extracted by ethanol, and the extract was lyophilized. The antioxidant activities of extract powder were examined by free radical scavenging assays, superoxide radical scavenging assays, lipid peroxidation assays and hydroxyl radical-induced DNA strand scission assays. The results show that the IC50 value of Polygonum aviculare L. extract is 50 microg/ml in free radical scavenging assays, 0.8 microg/ml in superoxide radical scavenging assays, and 15 microg/ml in lipid peroxidation assays, respectively. Furthermore, Polygonum aviculare L. extract has DNA protective effect in hydroxyl radical-induced DNA strand scission assays. The total phenolics and flavonoid content of extract is 677.4 +/- 62.7 microg/g and 112.7 +/- 13 microg/g. The results indicate that Polygonum aviculare L. extract clearly has antioxidant effects.  相似文献   

9.
Numerous diseases are induced by free radicals via lipid peroxidation, protein peroxidation and DNA damage. It has been known that a variety of plant extracts have antioxidant activities to scavenge free radicals. Whether Polygonum cuspidatum Sieb. et Zuce has antioxidant activity is unknown. In this study, dried roots of Polygonum cuspidatum were extracted by ethanol and the extract was lyophilized. Free radical scavenging assays, superoxide radical scavenging assays, lipid peroxidation assays and hydroxyl radical-induced DNA strand scission assays were employed to study antioxidant activities. The results indicate that the IC50 value oí Polygonum cuspidatum extract is 110 microg/ml in free radical scavenging assays, 3.2 microg/ml in superoxide radical scavenging assays, and 8 microg/ml in lipid peroxidation assays, respectively. Furthermore, Polygonum cuspidatum extract has DNA protective effect in hydroxyl radical-induced DNA strand scission assays. The total phenolics and flavonoid content of extract is 641.1 +/- 42.6 mg/g and 62.3 +/- 6.0 mg/g. The results indicate that Polygonum cuspidatum extract clearly has antioxidant effects.  相似文献   

10.
The anticancer drug, bleomycin, causes both single and double strand scission of duplex DNA in vitro, with double strand scission occurring in excess of that expected from the random accumulation of single strand nicks. The mechanism of the preferential double strand scission of DNA by bleomycin has been investigated through the synthesis of a series of double hairpin and linear oligonucleotides designed to contain a single nick-like structure at a defined site to serve as models of bleomycin-damaged duplex DNA. The 3' and/or 5' hydroxyls flanking the nick have been phosphorylated to model the increased negative charge at a bleomycin-generated nick. The ability of bleomycin to cleave the intact strand opposite the nick was then determined by autoradiography. The results demonstrate that phosphorylation at either the 3' or 5' hydroxyl, and especially when both sites are phosphorylated, strongly enhances selective cleavage by bleomycin of the opposite strand. These experiments indicate that bleomycin-mediated double strand scission is a form of self-potentiation in which the high affinity of bleomycin for the initially generated nicked sites leads to a greatly enhanced probability of scission of the strand opposite those sites.  相似文献   

11.
The action of iron-bleomycin and O2 in cleaving DNA has been resolved into two kinetic events following the initial attack on DNA by the kinetically competent drug species, "activated bleomycin." At 4 degrees C, DNA strand scission, monitored both viscometrically and fluorimetrically (t1/2 = 2.5-5 min), precedes the release from DNA of nucleic base propenals, which is half complete in about 40 min. Therefore, a moderately stable intermediate consisting of cleaved DNA bearing a base propenal precursor is formed. The release of tritium from deoxyribose carbon-2 occurs at the time of DNA scission, which is consistent with the base propenal precursor retaining the deoxyribose-3'-phosphate bond. Specific mechanistic proposals are discussed.  相似文献   

12.
DNA cleavage specificity of a group of cationic metalloporphyrins   总被引:9,自引:0,他引:9  
The ability of a group of water-soluble metalloporphyrins to cleave DNA has been investigated. Incubation of Mn3+, Fe3+, or Co3+ complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2T4MPyP) with DNA in the presence of ascorbate, superoxide ion, or iodosobenzene results in DNA breakage. Comparisons between the rates of porphyrin autodestruction with the rates of strand scission of covalently closed circular PM2 DNA indicate that the porphyrins remain intact during the cleavage process. Analysis of the porphyrin-mediated strand scissions on a 139-base-pair restriction fragment of pBR322 DNA using gel electrophoresis/autoradiography/microdensitometry reveals that the minimum porphyrin cleavage site is (A X T)3. The cleavage pattern within a given site was found to be asymmetric, indicating that porphyrin binding and the strand scission process are highly directional in nature. In addition to an analysis of the mechanism of porphyrin-mediated strand breakage in terms of the DNA cleavage mechanism of methidium-propyl-iron-EDTA and Fe-bleomycin, the potential of the cationic metalloporphyrins as footprinting probes and as new "reporter ligands" for DNA is presented and discussed.  相似文献   

13.
《Free radical research》2013,47(6):295-305
The industrial pollutant 2, 4, 5-trichlorophenol (2, 4, 5-TCP) was metabolized with postmitochondrial liver fraction from Aroclor-1254 induced rats. The generated metabolites induced single strand breaks in PM2 DNA. Among the metabolites produced are the 3, 4, 6-trichlorocatechol (TCC) and the 2, 5-dichlorohydroquinone (DCH), whereby the induction of DNA scission by DCH was approximately one hundred times greater than that of TCC. In the 2, 4, 5-TCP metabolization mixture radicals were observed by ESR. They were identified as the semiquinones of TCC and DCH. ESR studies confirmed that both TCC and DCH autoxidize in aqueous solution to their semiquinone radicals. The involvement of reactive oxygen species in the DNA strand scission was demonstrated by using DMSO, SOD, and catalase as scavengers. Inhibition of strand breaks with the scavenger enzymes did not give homogeneous results for DCH and TCC. This indicated that the directly damaging species might be different for DCH and TCC.  相似文献   

14.
We presented indirect evidence that in an excision-deficient rad3 mutant of yeast exposed to diepoxybutane (DEB), DNA synthesis continued past the damaged sites. This bypass replication was confined to the first post-treatment round of replication and was followed by inhibition of DNA synthesis. Analyses by alkaline sucrose gradient sedimentation and by alkaline elution from filters revealed that in mutant cells the first post-treatment round of replication proceeded at a similar rate to that in untreated cells and was not accompanied by strand scission of template DNA. The post-treatment synthesis was presumably of an error-prone type, as the frequency of reversion to ade2-1 prototrophy was increased. In contrast, in the isogenic wild-type strain, the post-treatment incorporation of radioactivity into DNA was slightly reduced and newly replicated DNA fragments were of lower molecular weight than in control cells. There was also some strain scission in template DNA, presumably resulting from excision-repair.  相似文献   

15.
甲素可敏化质粒pBR 322 DNA光氧化断链的使其封闭环DNA转变为开环DNA。甲素敏化pBR 322 DNA光氧化反应可被单线态氧淬灭剂-NaN_3抑制,证明此光敏氧化机制属Ⅱ型过程。  相似文献   

16.
Copper(I)-bleomycin [Cu(I) X BLM] was characterized in detail by 13C and 1H NMR. Unequivocal chemical shift assignments for Cu(I) X BLM and Cu(I) X BLM X CO were made by two-dimensional 1H-13C correlated spectroscopy and by utilizing the observation that Cu(I) X BLM was in rapid equilibrium with Cu(I) and metal-free bleomycin, such that individual resonances in the spectra of BLM and Cu(I) X BLM could be correlated. The binding of Cu(I) by bleomycin involves the beta-aminoalaninamide and pyrimidinyl moieties, and possibly the imidazole, but not N alpha of beta-hydroxyhistidine. Although no DNA strand scission by Cu(II) X BLM could be demonstrated in the absence of dithiothreitol, in the presence of this reducing agent substantial degradation of [3H]DNA was observed, as was strand scission of cccDNA. DNA degradation by Cu(I) X BLM was shown not to depend on contaminating Fe(II) and not to result in the formation of thymine propenal; the probable reason(s) for the lack of observed DNA degradation in earlier studies employing Cu(II) X BLM and dithiothreitol was (were) also identified. DNA strand scission was also noted under anaerobic conditions when Cu(II) X BLM and iodosobenzene were employed. If it is assumed that the mechanism of DNA degradation in this case is the same as that under aerobic conditions (i.e., with Cu(I) X BLM + O2 in the presence of dithiothreitol), then Cu X BLM must be capable of functioning as a monooxygenase in its degradation of DNA.  相似文献   

17.
The accumulation of DNA strand breaks and activation of ADP-ribosyltransferase (ADPRT) have recently been associated with cellular differentiation. Murine erythroleukemia (MEL) cells undergo erythropoietic differentiation when exposed to dimethyl sulfoxide (Me2SO) and several studies have suggested that DNA strand scission induced by this agent is a prerequisite for expression of the differentiated phenotype. Me2SO induction of MEL cells has also been associated with increases in ADPRT activity in one study, but not in another. We have monitored the effects of Me2SO on DNA strand breaks in preformed and replicating MEL cell DNA. The results clearly demonstrate that DNA fragmentation is not detectable during Me2SO induction of MEL differentiation, even in the presence of 3-aminobenzamide, an inhibitor of ADPRT. Further, these results are consistent with an absence of detectable changes in both endogenous and total potential ADPRT activity during Me2SO-induced MEL differentiation. These findings would argue against Me2SO induction of DNA strand scission and ADPRT in MEL cells undergoing differentiation.  相似文献   

18.
B F Chen  F J Castora 《Biochemistry》1988,27(12):4386-4391
A general, unrefined mechanism of type I DNA topoisomerase action involves several steps including DNA binding, single-strand scission, strand passage resealing, and, possibly, readoption of an active enzyme conformation. None of these steps requires an energy cofactor; however, we have shown previously that several mammalian type I topoisomerases are, in fact, inhibited by ATP. In this study, we wanted to examine which steps in the gross topoisomerase mechanism were sensitive or insensitive to ATP. Nitrocellulose filter binding experiments showed that ATP did not interfere with the binding of DNA by the enzyme and that ATP binding by topoisomerase was 5-fold greater in the presence of DNA than in its absence. Agarose gel electrophoresis in the presence or absence of ethidium bromide indicated that resealing was unaffected by added ATP. The addition of the adenine nucleotide did not alter the pattern of camptothecin-stimulated cleavage of DNA, indicating that strand scission was not the point of inhibition. To test whether strand passage or the readoption of an active conformation was an inhibited step, we used a unique DNA topoisomer as substrate. The results argued against readoption of an active enzyme conformation as an ATP-sensitive process.  相似文献   

19.
The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids.  相似文献   

20.
DNA strand scission by enzymically generated oxygen radicals   总被引:34,自引:0,他引:34  
Col E1 DNA suffers strand scission when exposed to xanthine oxidase acting aerobically on xanthine. Strand scission was prevented by low levels of superoxide dismutase or of catalase. Mannitol, benzoate, or histidine, which scavenge OH · but which react with neither O2? nor H2O2, also prevented strand scission. Replacement of 0.1 mm ethylenediaminetetraacetate by 0.1 mm diethylenetriaminepentaacetate prevented strand scission. Three mechanisms for the production of OH ·, or of a comparably powerful oxidant, by metal-catalyzed interaction of O2? with H2O2, are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号