首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
Low survival of cryopreserved sperm impedes the application of cryopreservation technique in spermcasting oyster species. This study developed a simple method of liquid nitrogen vapor freezing to improve post-thaw sperm survival in the spermcasting oyster Ostrea angasi. The results indicate that the permeable cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propylene glycol (PG) were non-toxic to sperm up to 20% concentration and 90 min exposure whereas methanol at 10% or higher was toxic to sperm for any exposure over 30 min. Among the treatments with permeable cryoprotectants, 15% EG produced the highest post-thaw sperm motility. Sperm motility was further improved by the addition of non-permeable cryoprotectants (trehalose and glucose), with 15% EG + 0.2 M trehalose resulting in the highest post-thaw sperm motility among all the combinations evaluated. The durations of 20, 30 and 60 min equilibrations produced a higher post-thaw sperm motility and plasma membrane integrity (PMI) than 10 min. Higher post-thaw motility and PMI were achieved by freezing sperm at the 8 cm height from the liquid nitrogen surface than at the 2, 4, 6, 10 or 12 cm height. Holding sperm for 10 min in liquid nitrogen vapor produced higher post-thaw motility and PMI than for 2, 5 or 20 min. The cryopreservation protocol developed in this study improved both post-thaw motility and PMI of O. angasi sperm at least 15% higher than those cryopreserved using programmable freezing method. Liquid nitrogen vapor freezing might have greater applicability in improving post-thaw sperm quality of spermcasting oyster species.  相似文献   

2.
Alternative techniques for the cryopreservation of kangaroo spermatozoa that reduced or eliminated the need for glycerol were investigated including; (1) freezing spermatozoa with 20% glycerol in pre-packaged 0.25 mL Cassou straws to enable rapid dilution of the glycerol post-thaw, (2) investigating the efficacy of 20% (v/v) dimethyl sulphoxide (DMSO) and dimethylacetamide (DMA—10%, 15% and 20% v/v) as cryoprotectants and (3) vitrification of spermatozoa with or without cryoprotectant (20% v/v glycerol, 20% v/v DMSO and 20% v/v DMA). Immediate in-straw post-thaw dilution of 20% glycerol and cryopreservation of spermatozoa in 20% DMSO produced no significant improvement in post-thaw viability of kangaroo spermatozoa. Spermatozoa frozen in 20% DMA showed post-thaw motility and plasma membrane integrity of 12.7 ± 1.9% and 22.7 ± 5.4%, respectively, while kangaroo spermatozoa frozen by ultra-rapid freezing techniques showed no evidence of post-thaw viability. The use of 10–20% DMA represents a modest but significant improvement in the development of a sperm cryopreservation procedure for kangaroos.  相似文献   

3.
不同渗透压的稀释液对猕猴精子低温冷冻保存的影响   总被引:3,自引:0,他引:3  
以稀释液TTE(382mOsm/kg)为对照,研究了5种渗透压(688、389、329、166、43mOsm/kg)的TEST稀释液(TEST、mTEST1、mTEST2、mTEST3、mTEST4)在冷冻过程中对猕猴精子功能的影响。精液一步稀释于含甘油的防冻液中,甘油的终浓度为5%(v/v)。在冷冻前后分别检测精子的运动度和质膜完整性,后者用Hoechst33342和碘化丙锭双色标记流式细胞术分析。结果表明:冷冻之前,与鲜精相比,用TEST和mTEST4稀释的精子运动度和质膜完整性显著降低(P<0·001),其余组中除mTEST2稀释的精子质膜完整性显著降低(P<0·05)外,精子运动度无差异;冷冻复苏后,TTE、mTEST3和mTEST1冻存精子的运动度和质膜完整性最高,其次是mTEST2,TEST和mTEST4冷冻效果最差(P<0·05)。提示等渗、适当高渗或低渗的稀释液适合猕猴精子的冷冻保存;对精子产生高渗毒害作用是导致猕猴精子用TEST冷冻存活率低的主要原因。  相似文献   

4.
《Cryobiology》2009,58(3):304-307
Alternative techniques for the cryopreservation of kangaroo spermatozoa that reduced or eliminated the need for glycerol were investigated including; (1) freezing spermatozoa with 20% glycerol in pre-packaged 0.25 mL Cassou straws to enable rapid dilution of the glycerol post-thaw, (2) investigating the efficacy of 20% (v/v) dimethyl sulphoxide (DMSO) and dimethylacetamide (DMA—10%, 15% and 20% v/v) as cryoprotectants and (3) vitrification of spermatozoa with or without cryoprotectant (20% v/v glycerol, 20% v/v DMSO and 20% v/v DMA). Immediate in-straw post-thaw dilution of 20% glycerol and cryopreservation of spermatozoa in 20% DMSO produced no significant improvement in post-thaw viability of kangaroo spermatozoa. Spermatozoa frozen in 20% DMA showed post-thaw motility and plasma membrane integrity of 12.7 ± 1.9% and 22.7 ± 5.4%, respectively, while kangaroo spermatozoa frozen by ultra-rapid freezing techniques showed no evidence of post-thaw viability. The use of 10–20% DMA represents a modest but significant improvement in the development of a sperm cryopreservation procedure for kangaroos.  相似文献   

5.
以冷冻精子的复苏运动度、荧光染料Hoechst 3 3 2 5 8检测的细胞膜完整率、异硫氰酸荧光素标记的花生凝集素 (FITC PNA)检测的顶体完整率作为精子功能状态的指标 ,对甘油、二甲亚砜、乙二醇和丙二醇 4种常用渗透性防冻剂在猕猴精子冷冻保存过程中的作用进行了比较。结果表明 :冷冻保存精子的复苏运动度 ,甘油 ( 4 7 3± 5 7% )和乙二醇 ( 4 4 8± 6 7% ) >二甲亚砜 ( 2 2 9± 0 9% ) >丙二醇 ( 0± 0 % ) ;细胞膜完整率 ,甘油 ( 5 4 8± 3 2 % )和乙二醇 ( 5 4 0± 6 7% ) >二甲亚砜 ( 3 7 5± 7 0 % ) >丙二醇 ( 2 8 3± 6 5 % ) ;顶体完整率 ,甘油 ( 82 2± 2 4 % )和乙二醇 ( 82 4± 2 4 % ) >二甲亚砜 ( 6 8 7± 5 7% )和丙二醇 ( 72 3±3 5 % ) (P <0 0 5 )。结果提示 :二甲亚砜和丙二醇 ,尤其是丙二醇并不适合猕猴精子的冷冻保存 ;而乙二醇具有和甘油相似的保护作用 ,是一种极具潜力的猕猴精子冷冻保存的渗透性防冻剂。  相似文献   

6.
Ji XS  Zhao Y  Chen SL  Jiang YL  Wang H  Song JY  Ding L  Chen HJ 《Theriogenology》2008,69(7):793-797
Although sperm from several fish species have been successfully cryopreserved, few studies have been done in small and/or endangered species. The aim of the present work was to develop a method of freezing and refreezing Varicorhinus macrolepis semen in 1.8 mL cryovials. The effect of extenders and cryoprotectants on the motility of post-thaw sperm was examined. The motility of frozen-thawed sperm in extender D-15 was higher than that in MPRS and fish Ringer solution (P<0.05). Dimethyl sulfoxide (DMSO) and glycerol provided greater protection to sperm than methanol during freezing and thawing; the most effective concentration of DMSO and glycerol was 10%. The fertilization rate of frozen-thawed sperm was not significantly different from that of fresh sperm. Furthermore, mean (+/-S.D.) hatching rate did not differ significantly between frozen-thawed (82.7+/-12.4%) and fresh sperm (90.7+/-4.5%). Although frozen-thawed sperm that was immediately refrozen had 0% post-thaw motility, frozen semen that was refrozen after dilution with D-15 (containing DMSO at a ratio of 1:2) had post-thaw motility of 38.3+/-2.9%. Motility was lower for refrozen than for frozen sperm (P<0.05). Furthermore, fertilization and hatching rates of refrozen sperm were 42.9+/-6.7 and 34.1+/-10.5%, respectively, which were lower than that of fresh sperm (P<0.05).  相似文献   

7.
Although the development of semen cryopreservation in the African elephants (Loxodonta africana) has been accomplished, effective procedures for cryopreservation of Asian elephant (Elephas maximus) spermatozoa have not been established. In the present study, we investigate the freezing methods for conservation of Asian elephant spermatozoa under field conditions and identify the most suitable freezing protocols which provide acceptable post-thaw semen quality. Semen was collected from two Asian elephant bulls (EM1 and EM2, 10 ejaculates from each bull) by manual manipulation and were assessed for volume, pH, sperm cell concentration, and progressive motility. Eight out of 20 ejaculates were of acceptable quality (progressive motility >/= 60%), and were used for cryopreservation studies. Semen were frozen in TEST + glycerol, TEST + DMSO, HEPT + glycerol, or HEPT + DMSO. The post-thaw progressive sperm motilities were assessed, and sperm cells were stained with PI and FITC-PNA for membrane and acrosomal integrity assessment using flow cytometry. Post-thaw progressive motility of spermatozoa (EM1: 42.0 +/- 4.3%; EM2: 26.0 +/- 17.3%) and the percentage of membrane and acrosome intact spermatozoa (EM1: 55.5 +/- 8.1%; EM2: 46.3 +/- 6.4%) cryopreserved in TEST + glycerol were significantly higher than (P < 0.05) those frozen in the other medium investigated choices for cryopreservation of Asian elephant spermatozoa. The data support the use of TEST + glycerol as an acceptable cryopreservation media of Asian elephant semen for the establishment of sperm banks.  相似文献   

8.
Recently, there has been increased interest in ultra-rapid freezing with mammalian spermatozoa, especially for vitrification in the absence of cryoprotectants. Sperm cryopreservation in non-human primates has been successful, but the use of frozen-thawed sperm in standard artificial insemination (AI) remains difficult, and removal of permeable cryoprotectant may offer opportunities for increased AI success. The present study intended to explore the possibility of freezing rhesus monkey sperm in the absence of permeable cryoprotectants. Specifically, we evaluated various factors such as presence or absence of egg yolk, the percentage of egg yolk in the extenders, and the effect of cooling and thawing rate on the success of freezing without permeable cryoprotectants. Findings revealed that freezing with TEST in the absence of egg yolk offers little protection (<15% post-thaw motility). Egg yolk of 40% or more in TEST resulted in decreased motility, while egg yolk in the range of 20-30% yielded the most motile sperm. Cooling at a slow rate (29 °C/min) reduced post-thaw motility significantly for samples frozen with TEST-yolk alone, but had no effect for controls in the presence of glycerol. Similarly, slow thawing in room temperature air is detrimental for freezing without permeable cryoprotectant (<2% motility). In addition to motility, the ability of sperm to capacitate based on an increase in intracellular calcium levels upon activation with cAMP and caffeine suggested no difference between fresh and frozen-thawed motile sperm, regardless of treatment. In summary, the present study demonstrates that ejaculated and epididymal sperm from rhesus monkeys can be cryopreserved with TEST-yolk (20%) in the absence of permeable cryoprotectant when samples were loaded in a standard 0.25-mL straw, cooled rapidly in liquid nitrogen vapor at 220 °C/min, and thawed rapidly in a 37 °C water bath. This study also represents the first success of freezing without permeable cryoprotectant in non-human primates.  相似文献   

9.
The objective of this study was to develop an ideal freezing extender and method for rat epididymal sperm cryopreservation. Epididymal sperm collected from 30 Wistar males was frozen, and experiments were conducted to study its post-thaw characteristics when freezing with raffinose-free buffer or various concentrations of raffinose and egg yolk dissolved in distilled and deionised water, PBS, or modified Krebs–Ringer bicarbonate (mKRB)-based extender. Different concentrations of glycerol, Equex STM, or sodium dodecyl sulfate (SDS) dissolved in either PBS or mKRB containing egg yolk were also tested. Based on the data from these experiments, further experiments tested how different sugars such as raffinose, trehalose, lactose, fructose, and glucose dissolved in mKRB with Equex STM, SDS and egg yolk supplementation affected the post-thaw characteristics of cryopreserved sperm. Cryosurvival of frozen-thawed sperm were judged by microscopic assessment of the sperm motility index (SMI), and acrosome integrity was measured using FITC-PNA staining. Thawed sperm were subjected to 3 h of a thermal resistance test. Beneficial effects on the post-thaw survival of sperm were obtained when 0.1 M raffinose in mKRB was used with 0.75% Equex STM, 0.05% SDS, and 20% egg yolk. Sperm cryopreserved with this treatment exhibited a higher motility index and maintained greater SMI and acrosome integrity throughout incubation when compared to sperm frozen in various concentrations of other cryoprotectants and trehalose, lactose, fructose, glucose. In conclusion, cryopreservation in an extender solution of raffinose dissolved in mKRB containing Equex STM, SDS and egg yolk greatly enhances the freezability of rat epididymal sperm.  相似文献   

10.
Cryopreservation of stallion semen is often associated with poor post-thaw sperm quality. Sugars are among the important components of a freezing extender and act as non-permeating cryoprotectants. This study aimed to compare the quality of stallion sperm frozen with glucose, fructose or sorbitol-containing freezing extenders. Semen was collected from six stallions of proven fertility and cryopreserved using a freezing extender containing different types of monosaccharide sugars (glucose, fructose or sorbitol). After thawing, the semen was examined for sperm motility, viability, acrosome integrity, plasma membrane functionality and sperm longevity. The fertility of semen frozen in the presence of sorbitol was also tested by artificial insemination. Sperm quality was significantly decreased following freezing and thawing (P < 0.05). Fructose was inferior for protecting sperm during cryopreservation when compared to sorbitol and glucose (P < 0.05). Although the viability, motility and acrosome integrity of sperm cryopreserved with a glucose-containing extender did not significantly differ from sperm frozen in the sorbitol-based extender when examined at 2 and 4 h post-thaw, all of these parameters plus plasma membrane functionality were improved for sperm frozen in the sorbitol extender than in the glucose extender when examined 10 min post-thaw. Two of four mares (50%) inseminated with semen frozen with a sorbitol-containing freezing extender became pregnant. It is concluded that different sugars have different abilities to protect against cryoinjury during freezing and thawing of stallion sperm. This study demonstrated that an extender containing sorbitol as primary sugar can be used to successfully cryopreserve equine sperm; moreover, the quality of frozen-thawed sperm appeared to be better than when glucose or fructose was the principle sugar in the freezing extender.  相似文献   

11.
The objective was to develop a freezing protocol using a directional freezing (DF) technique for cryopreservation of rhesus macaque sperm and achieve a survival rate comparable to that achieved with a conventional freezing (CF) technique. Rhesus macaque sperm frozen with a DF technique, with cooling rates of 12 or 16 °C/min, had higher post-thaw motility (P < 0.05) than those cooled at 7 °C/min (59.3, 61.1, and 50.3%, respectively). Furthermore, sperm cryopreserved with 5% glycerol and a DF technique had similar frozen-thawed sperm motility to those cryopreserved by a CF technique (63.7 vs. 53.9%, P > 0.05). The function of sperm cryopreserved at the optimized cooling rate using a DF technique was evaluated by in vitro fertilization of oocytes collected from gonadotropin-stimulated rhesus macaques. Of the 38 mature oocytes collected, 78.9% were fertilized and 71.1, 47.4, and 42.1% of the oocytes developed to the 2-cell, morulae, and blastocyst stages, respectively. In conclusion, rhesus macaque sperm was effectively cryopreserved using a DF technique, providing a new and effective method for genetic preservation in this important species.  相似文献   

12.
Motility and cryopreservation of testicular sperm of European common frog, Rana temporaria were investigated. Collected testicular spermatozoa were immotile in solutions of high osmolalities: 300 mmol/l sucrose and motility inhibiting saline solution-MIS. Full sperm motility could be activated in distilled water or in a solution of 50 mmol/l NaCl, = 90 mosmol/kg, with 75-90% motility and 14-16 μm s−1 swimming velocity. Spermatozoa activated in distilled water and kept at room temperature ceased the motility within a period of 1 h. But when they were kept at 4 °C, no significant decrease in sperm motility and velocity occurred over a period of 1 h. Incubation of testicular sperm diluted 1:2 with MIS containing 10% DMSO, 5% glycerol, 10% methanol, or 10% propandiol for a period of 40 min at 4 °C showed that propandiol was the most toxic cryoprotectant for spermatozoa of European common frog R. temporaria. However, methanol was not toxic to spermatozoa during the 40 min incubation period, it failed to protect spermatozoa during the freezing and thawing process. DMSO and glycerol were useful penetrating cryoprotectants that interacted with sperm diluents in cryodiluent efficacy. In combination with the sucrose diluent, DMSO was a better cryoprotectant than glycerol, while in combination with MIS, DMSO and glycerol were similarly useful. Sperm was frozen at two freezing levels above the surface of liquid nitrogen. Sperm frozen 5 cm above the surface of liquid nitrogen resulted in immotile and non-viable spermatozoa. However, sperm frozen at 10 cm above the surface of liquid nitrogen showed 40-45% viability and 30-35% motility, compared to the untreated freshly collected testicular sperm. Addition of hen egg yolk had no positive effect on the post-thaw sperm motility, viability and hatching rate when added to sucrose cryodiluents. However, addition of 5% egg yolk to the MIS containing 5% glycerol and 2.5% sucrose significantly improved the hatching rate than all other treatments. Therefore, we conclude that, MIS and 300 mmol/l sucrose are suitable diluents for immotile storage of testicular semen. For cryopreservation, dilution to a final concentration of 5-6 × 106/ml in MIS with 5% glycerol, 2.5% sucrose and 5% egg yolk, frozen in liquid nitrogen vapour at 10 cm above its surface, and thawed at 22 °C for 40 s is a useful cryopreservation protocol for R. temporaria sperm. Further research is needed to determine the motility parameters and cryopreservation of spermatic urine of R. temporaria.  相似文献   

13.
Procedures were developed for the collection, refrigerated storage and cryopreservation of black drum spermatozoa. Sperm samples were collected by removing and slicing the testis, and suspending the spermatozoa in Hanks' balanced salt solution (HBSS) at 200 mOsm/kg. Threshold activation (10%) of black drum spermatozoa occurred at 370 mOsm/kg, and complete activation occurred at 580 mOsm/kg in HBSS. Sperm cells activated in artificial seawater had higher motility than those activated in HBSS at osmolalities from 350 to 500 mOsm/kg. Spermatozoa stored at 4 degrees C in HBSS or artificial seawater at osmolalities from 202 to 290 mOsm/kg retained motility longer than did those stored at other osmolalities Dilution rate had no effect on sperm storage time at 4 degrees C. Four chemicals were evaluated as cryoprotectants: dimethyl sulfoxide (DMSO), n,n-dimethyl acetamide (DMA), methanol, and glycerol. Glycerol and DMA at concentrations of 10% significantly reduced motility within 52 min. Spermatozoa were cryopreserved at 3 freezing rates (-27, -30, or -45 degrees C/min) in a nitrogen vapor shipping dewar or a computer-controlled freezer. Spermatozoa frozen using 10% DMSO had the highest post-thaw motility at a freezing rate of -27 or -30 degrees C/min. Spermatozoa frozen using 5% glycerol, 5% DMSO, or 10% DMSO had the highest post-thaw motility at a freezing rate of -45 degrees C/min.  相似文献   

14.
The objective was to identify an extender and cryoprotectant combination for Indian rhinoceros (Rhinoceros unicornis) sperm that yielded high post-thaw sperm quality. Male Indian rhinoceroses (n = 6; 7.5-34 yr old) were anesthetized and subjected to a regimented electroejaculation procedure (75-100 mAmps; 4-10 volts; 7-150 stimuli; total of 10 electroejaculation procedures). High quality semen fractions from each ejaculate were divided into four aliquots and a 2 x 2 factorial design used to compare the effect of two sperm extenders (standard equine [EQ] and skim milk-egg-yolk-sugar [SMEY]), and two cryoprotectants (glycerol and dimethylsulfoxide [DMSO]). Cyropreserved samples were thawed and assessed for motility, viability and acrosome integrity over time. Electroejaculate fractions processed for cryopreservation had high sperm concentration (516 × 106/mL) and motility (79%). Post-thaw sperm characteristics were higher (P < 0.05) when semen was cryopreserved in EQ versus SMEY. Post-thaw motility of sperm cyropreserved in EQ averaged 50-55% compared to 22-37% in SMEY, with no significant differences in sperm characteristics of samples cyropreserved in glycerol and DMSO. In conclusion, sperm collected from Indian rhinoceroses via electroejaculation were cryopreserved using EQ extender with either glycerol or DMSO; post-thaw quality was adequate for use in assisted reproductive procedures.  相似文献   

15.
《Cryobiology》2016,72(3):442-447
We verify the effects of different cryoprotectants on the cryopreservation of agouti (Dasyprocta leporina) epididymal sperm. We used 16 pairs of testes–epididymis complexes of sexually mature animals. We immediately evaluated epididymal sperm obtained by retrograde flushing for concentration, motility, vigor, viability, osmotic response, and morphology. Samples were extended in a coconut water extender plus 20% egg yolk, containing glycerol, ethylene glycol, dimethylsulfoxide – DMSO, or dimethylformamide. Finally, samples were stored in 0.25 mL straws, frozen in liquid nitrogen, and thawed after one week, being reevaluated and assessed for membrane integrity using fluorescent probes. The higher values for postthawing sperm motility, vigor, and membrane integrity were achieved by the usage of glycerol, when compared to ethylene glycol and dimethylformamide (P < 0.05); however, no differences were found between glycerol and DMSO (P > 0.05). All cryoprotectants provided a similar effect on the preservation of sperm morphology, osmotic response, and viability (P > 0.05). Therefore, here onwards, there was testing of glycerol and DMSO at 3 and 6% concentrations using the same freezing–thawing protocol reported previously. As the main result, DMSO at 6% concentration provided a decrease in sperm parameters, as well as in the chromatin integrity and in the binding capability of sperm. In conclusion, glycerol 3 or 6% and DMSO 3% can be used as alternative cryoprotectants for agouti epididymal sperm cryopreservation.  相似文献   

16.
The rabbit is considered to be a valuable laboratory animal. We compared 2% acetamide and glycerol as cryoprotectants in egg-yolk diluent for ejaculated Japanese white rabbit spermatozoa to improve sperm cryopreservation methods. Fertility through artificial insemination, forward progressive motility and plasma membrane integrity of the post-thaw spermatozoa were examined. The rates of forward progressive motility and plasma membrane integrity of the spermatozoa frozen with acetamide (27.1 +/- 8.3% and 24.5 +/- 6.5%) were significantly (P < 0.05) higher than those of the spermatozoa frozen with glycerol (16.3 +/- 10.9% and 14.3 +/- 7.6%). Though there was no significant difference in the kindling rates, the litter size of females inseminated with spermatozoa frozen with acetamide (6.0 +/- 1.1) were significantly (P < 0.05) higher than those of spermatozoa frozen with glycerol (3.0 +/- 0.4). The results indicate that 2% acetamide has a higher cryoprotective effect than 2% glycerol for sperm cryopreservation in the Japanese white rabbit.  相似文献   

17.
Experiments were carried out on the sperm cryopreservation of artificially induced eels. The effects of several extenders and two cryoprotectants on the motility of spermatozoa were investigated. The highest post-thaw motility was observed with the combination of Tanaka's extender and DMSO as cryoprotectant. Further dilution after thawing resulted in complete loss of motility in samples frozen in presence of DMSO while sperm frozen with methanol as cryoprotectant retained its motility after further dilution.  相似文献   

18.
Seminal plasma is generally removed from equine spermatozoa prior to cryopreservation. Two experiments were designed to determine if adding seminal plasma back to spermatozoa, prior to cryopreservation, would benefit the spermatozoa. Experiment 1 determined if different concentrations of seminal plasma affected post-thaw sperm motility, viability and acrosomal integrity of frozen/thawed stallion spermatozoa. Semen was washed through 15% Percoll to remove seminal plasma and spermatozoa resuspended to 350 x 10(6)sperm/mL in a clear Hepes buffered diluent containing either 0, 5, 10, 20, 40 or 80% seminal plasma for 15 min, prior to being diluted to a final concentration of 50 x 10(6)sperm/mL in a Lactose-EDTA freezing diluent and cryopreserved. Sperm motility was analyzed at 10 and 90 min after thawing, while sperm viability and acrosomal integrity were analyzed 20 min after thawing. Seminal plasma did not affect sperm motility, viability or acrosomal integrity (P>0.05). Experiment 2 tested the main affects of seminal plasma level (5 or 20%), incubation temperature (5 or 20 degrees C) and incubation time (2, 4 or 6 h) prior to cryopreservation. In this experiment, spermatozoa were incubated with 5 or 20% seminal plasma for up to 6h at either 5 or 20 degrees C prior to cryopreservation in a skim milk, egg yolk freezing extender. Samples cooled immediately to 5 degrees C, prior to freezing had higher percentages of progressively motile spermatozoa than treatments incubated at 20 degrees C (31 versus 25%, respectively; P<0.05), when analyzed 10 min after thawing. At 90 min post-thaw, total motility was higher for samples incubated at 5 degrees C (42%) compared to 20 degrees C (35%; P<0.05). In addition, samples containing 5% seminal plasma had higher percentages of total and progressively motile spermatozoa (45 and 15%) than samples exposed to 20% seminal plasma (33 and 9%; P<0.05). In conclusion, although the short-term exposure of sperm to seminal plasma had no significant effect on the motility of cryopreserved equine spermatozoa, prolonged exposure to seminal plasma, prior to cryopreservation, was deleterious.  相似文献   

19.
Despite some 26 published reports addressing oyster sperm cryopreservation, systematic factor optimization is lacking, and sperm cryopreservation has not yet found application in aquaculture on a commercial scale. In this study, the effects of cooling rate, single or combined cryoprotectants at various concentrations, equilibration time (exposure to cryoprotectant), straw size, and cooling method were evaluated for protocol optimization of shipped sperm samples from diploid oysters. Evaluation of cooling rates revealed an optimal rate of 5 degrees C/min to -30 degrees C followed by cooling at 45 degrees C/min to -80 degrees C before plunging into liquid nitrogen. Screening of single or combined cryoprotectants at various concentrations suggested that a low concentration (2%) of polyethylene glycol (FW 200) was effective in retaining post-thaw motility and fertilizing capability when combined with permeating cryoprotetcants such as dimethyl sulfoxide (DMSO), methanol (MeOH), and propylene glycol (P-glycol). However, polyethylene glycol alone was not as effective as MeOH, DMSO, and P-glycol when using the same methods. The highest post-thaw motility (70%) and percent fertilization (98%) were obtained for samples cryopreserved with 6% MeOH. However, this does not exclude other cryoprotectants such as DMSO or P-glycol identified as effective agents in other studies. There was no significant difference in post-thaw motility between straw sizes of 0.25- and 0.5-ml. Equilibration time (exposure to cryoprotectant) of 60 min could be beneficial when the cryoprotectant concentration is low and solution is added in a step-wise fashion at low temperature. Differences in post-thaw sperm quality (e.g., motility or percent fertilization) among individual males were evident in this research. As a consequence, a generalized classification describing males with different tolerances (broad, intermediate, and narrow) to cryopreservation was developed. This classification could be applied to strain or species differences in tolerances to the cryopreservation process. The present study demonstrated that oyster sperm could be collected and shipped chilled to another facility for cryopreservation, and that it could be shipped back to the hatchery for fertilization performed at a production scale yielding live larvae with >90% fertilization. Given the existence of facilities for commercial-scale cryopreservation of dairy bull sperm, the methods developed in the present study for oysters provide a template for the potential commercialization of cryopreserved sperm in aquatic species.  相似文献   

20.
The cryopreservation of salmonid sperm is a complex process involving the interplay of many factors. Although cryopreservation protocols can be evaluated through a range of responses at various stages in the process, the number of progeny is the ultimate indicator of success. We compared reproductive success from freezing Atlantic salmon (Salmo salar L.) sperm using the eight combinations of (1) the penetrating cryoprotectants, 10% dimethyl sulfoxide (DMSO) or methanol (MeOH); (2) the nonpenetrating cryoprotectants glucose (0.3 M) or sucrose (0.6 M), and freezing in 0.1 mL pellets or 0.25 mL straws. All cryodiluents were supplemented with 10% (v/v) of hen's egg yolk. Response variables were the percentage and degree of motility of thawed and activated sperm using computer assisted sperm analysis (CASA), and rates of eyed embryos, hatch and egg sac larvae. Growth rates of alevins were assessed to two months post hatch. Atlantic salmon milt cryopreserved in straws had higher spermatozoa motility and fertilization success than milt cryopreserved in pellets (P < 0.05). Type of sugar tested did not significantly affect the response variables. In the MeOH treatment, thawed spermatozoa achieved higher speed and a higher fertilization rate evaluated at the eyed embryo stage than spermatozoa subjected to the DMSO treatment. Higher mortality rate (especially before hatching) of MeOH offspring than DMSO offspring led to equal numbers of progeny for the two treatments from the swimming stage to the end of the study. Moreover, during feeding fish from the MeOH group produced significantly lower weight larvae than the DMSO and control groups. Even so, the weight of the MeOH group was satisfactory. Length and the condition factors did not differ significantly among the larvae groups. Significant positive correlations were found between fertilization success (measured in number of eyed eggs) and both motility (rs = 0.81), and velocity (rs = 0.49). Freezing in straws gave betters results than freezing in pellets for cryopreservation of salmon milt; whereas type of sugar tested (glucose vs sucrose) did not have significant effects. Penetrating cryoprotectants DMSO and MeOH differed in their effect on post-thawed sperm velocity, fertilization rate and mortality rate of progeny, suggesting the need for further research on the influence of these cryoprotectants on frozen sperm and and post-fertilization devopmental processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号