首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Primary cilium development along with other components of the centrosome in mammalian cells was analysed ultrastructurally and by immunofluorescent staining with anti-acetylated tubulin antibodies. We categorized two types of primary cilia, nascent cilia that are about 1microm long located inside the cytoplasm, and true primary cilia that are several microm long and protrude from the plasma membrane. The primary cilium is invariably associated with the older centriole of each diplosome, having appendages at the distal end and pericentriolar satellites with cytoplasmic microtubules emanating from them. Only one cilium per cell is formed normally through G(0), S and G(2)phases. However, in some mouse embryo fibroblasts with two mature centrioles, bicilates were seen. Primary cilia were not observed in cultured cells where the mature centriole had no satellites and appendages (Chinese hamster kidney cells, line 237, some clones of l-fibroblasts). In contrast to primary cilia, striated rootlets were found around active and non-active centrioles with the same frequency. In proliferating cultured cells, a primary cilium can be formed several hours after mitosis, in fibroblasts 2-4 h after cell division and in PK cells only during the S-phase. In interphase cells, formation of the primary cilium can be stimulated by the action of metabolic inhibitors and by reversed depolymerization of cytoplasmic microtubules with cold or colcemid treatments. In mouse renal epithelial cells in situ, the centrosome was located near the cell surface and mature centrioles in 80% of the cells had primary cilium protruding into the duct lumen. After cells were explanted and subcultured, the centrosome comes closer to the nucleus and the primary cilium was depolymerized or reduced. Later primary cilia appeared in cells that form islets on the coverslip. However, the centrosome in cultured ciliated cells was always located near the cell nucleus and primary cilium never formed a characteristic distal bulb. A sequence of the developmental stages of the primary cilium is proposed and discussed. We also conclude that functioning primary cilium does not necessarily operate in culture cells, which might explain some of the contradictory data on cell ciliation in vitro reported in the literature.  相似文献   

2.
The NIMA-related kinase Nek2 promotes centrosome separation at the G2/M transition and, consistent with this role, is known to be concentrated at the proximal ends of centrioles. Here, we show by immunofluorescence microscopy that Nek2 also localises to the distal portion of the mother centriole. Its accumulation at this site is cell cycle-dependent and appears to peak in late G2. These findings are consistent with previous data implicating Nek2 in promoting reorganisation of centrosome-anchored microtubules at the G2/M transition, given that microtubules are anchored at the subdistal appendages of the mother centriole in interphase. In addition, we report that siRNA-mediated depletion of Nek2 compromises the ability of cells to resorb primary cilia before the onset of mitosis, while overexpression of catalytically active Nek2A reduces ciliation and cilium length in serum-starved cells. Based on these findings, we propose that Nek2 has a role in promoting cilium disassembly at the onset of mitosis. We also present evidence that recruitment of Nek2 to the proximal ends of centrioles is dependent on one of its substrates, the centrosome cohesion protein C-Nap1.  相似文献   

3.
During bipolar mitosis a pair of centrioles is distributed to each cell but the activities of the two centrioles within the pair are not equivalent. The parent is normally surrounded by a cloud of pericentriolar material that serves as a microtubule-organizing center. The daughter does not become associated with pericentriolar material until it becomes a parent in the next cell cycle (Rieder, C.L., and G. G. Borisy , 1982, Biol. Cell., 44:117-132). We asked whether the microtubule-organizing activity associated with a centriole was dependent on its becoming a parent. We induced multipolar mitosis in Chinese hamster ovary cells by treatment with 0.04 micrograms/ml colcemid for 4 h. After recovery from this colcemid block, the majority of cells divided into two, but 40% divided into three and 2% divided into four. The tripolar mitotic cells were examined by antitubulin immunofluorescence and by high voltage electron microscopy of serial thick (0.25-micron) sections. The electron microscope analysis showed that centriole number was conserved and that the centrioles were distributed among the three spindle poles, generally in a 2:1:1 or 2:2:0 pattern. The first pattern shows that centriole parenting is not prerequisite for association with pole function; the second pattern indicates that centrioles per se are not required at all. However, the frequency of midbody formation and successful division was higher when centrioles were present in the 2:1:1 pattern. We suggest that the centrioles may help the proper distribution and organization of the pericentriolar cloud, which is needed for the formation of a functional spindle pole.  相似文献   

4.
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.  相似文献   

5.
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.  相似文献   

6.
Taxol blocks the migrations of the sperm and egg nuclei in fertilized eggs and induces asters in unfertilized eggs of the sea urchins Lytechinus variegatus and Arbacia punctulata. Video recordings of eggs inseminated in 10 microM taxol demonstrate that sperm incorporation and sperm tail motility are unaffected, that the sperm aster formed is unusually pronounced, and that the migration of the egg nucleus and pronuclear centration are inhibited. The huge monopolar aster persists for at least 6 h; cleavage attempts and nuclear cycles are observed. Colcemid (10 microM) disassembles both the large taxol-stabilized sperm aster in fertilized eggs and the numerous asters induced in unfertilized eggs. Antitubulin immunofluorescence microscopy demonstrates that in fertilized eggs all microtubules are within the prominent sperm aster. Within 15 min of treatment with 10 microM taxol, unfertilized eggs develop numerous (greater than 25) asters de novo. Transmission electron microscopy of unfertilized eggs reveals the presence of microtubule bundles that do not emanate from centrioles but rather from osmiophilic foci or, at times, the nuclear envelope. Taxol-treated eggs are not activated as judged by the lack of DNA synthesis, nuclear or chromosome cycles, and the cortical reaction. These results indicate that: (a) taxol prevents the normal cycles of microtubule assembly and disassembly observed during development; (b) microtubule disassembly is required for the nuclear movements during fertilization; (c) taxol induces microtubules in unfertilized eggs; and (d) nucleation centers other than centrioles and kinetochores exist within unfertilized eggs; these presumptive microtubule organizing centers appear idle in the presence of the sperm centrioles.  相似文献   

7.
We report here the ultrastructural localization of S-100b protein-like immunoreactivity in the centriole, cilia, and basal body. Duodenum and trachea of guinea pigs and rats were fixed and immunostained by the protein A-gold method. All centrioles, cilia, and basal bodies observed showed clear S-100b protein-like immunoreactivity. Specific colloidal gold particles were located over the microtubules in these cell organelles. However, other microtubules scattered throughout the cytoplasm were devoid of immunoreactivity. Although the functional significance of S-100b protein-like immunoreactivity in the centriole, cilia, and basal bodies remains to be elucidated, the present results introduce new perspectives into the investigation of localization and function of S-100 proteins.  相似文献   

8.
Basal bodies are freed from cilia and transition into?centrioles to organize centrosomes in dividing cells. A mutually exclusive centriole/basal body existence during cell-cycle progression has become a widely accepted principle. Contrary to this view, we?show here that cilia assemble and persist through?two meiotic divisions in Drosophila spermatocytes. Remarkably, all four centrioles assemble primary cilia-centriole complexes that transit from the plasma membrane encased in a packet of membrane, recruit centrosomal material into microtubule-organizing centers, and persist at the spindle poles through division. Thus, spermatocyte centrioles organize centrosomes and cilia simultaneously at cell division. These findings challenge the prevailing view that cilia antagonize cell-cycle progression and raise the possibility that cilium retention at cell division may occur in diverse organisms and cell types.  相似文献   

9.
Anterior and posterior centrioles of Physarum amoebae are indistinguishable by their size during interphase but there is a correlation between the size of the two centrioles in the same amoeba. The interphase length of centrioles in diploid amoebae possessing only one pair of centrioles was 11% longer than in the case of the haploid strain. Treatment with taxol led to a 23 and 32% increase of the mean length in interphase and blocked mitosis, respectively. Conversely, during control mitosis the parental centrioles showed a 12% decrease of their mean length while the size of the daughter centrioles increased progressively. Neither nocodazole nor cold treatment induce a decrease of centriole length. The mean length of the cartwheel structure (internal proximal part) although constant during mitosis could be increased 24% in the presence of taxol. Similarly there was a correlation between the number of anterior satellites and the centriole length.  相似文献   

10.
Centrin-2 is required for centriole duplication in mammalian cells   总被引:2,自引:0,他引:2  
BACKGROUND: Centrosomes are the favored microtubule-organizing framework of eukaryotic cells. Centrosomes contain a pair of centrioles that normally duplicate once during the cell cycle to give rise to two mitotic spindle poles, each containing one old and one new centriole. However, aside from their role as an anchor point for pericentriolar material and as basal bodies of flagella and cilia, the functional attributes of centrioles remain enigmatic. RESULTS: Here, using RNA interference, we demonstrate that "knockdown" of centrin-2, a protein of centrioles, results in failure of centriole duplication during the cell cycle in HeLa cells. Following inhibition of centrin-2 synthesis, the preexisting pair of centrioles separate, and functional bipolar spindles form with only one centriole at each spindle pole. Centriole dilution results from the ensuing cell division, and daughter cells are "born" with only a single centriole. Remarkably, these unicentriolar daughter cells may complete a second and even third bipolar mitosis in which spindle microtubules converge onto unusually broad spindle poles and in which cell division results in daughter cells containing either one or no centrioles at all. Cells thus denuded of the mature or both centrioles fail to undergo cytokinesis in subsequent cell cycles, give rise to multinucleate products, and finally die. CONCLUSIONS: These results demonstrate a requirement for centrin in centriole duplication and demonstrate that centrioles play a role in organizing spindle pole morphology and in the completion of cytokinesis.  相似文献   

11.
Electron microscopy was used to investigate primary cilia in quiescent 3T3 cells. As in the case of primary cilia of other cell types, their basal centriole was found to be a focal point of numerous cytoplasmic microtubules which terminate at the basal feet. There are also intermediate filaments which appear to converge at the basal centriole. Cross-striated fibers of microtubular diameter, reminiscent of striated rootlets of ordinary cilia, appear associated with the proximal end of the basal centriole. Usually less than nine cross-banded basal feet surround the basal centriole in a well-defined plane perpendicular to the centriolar axis. The ciliary shaft was found to be entirely enclosed in the cytoplasm of fully flattened cells. In rounded cells, it could be found extending to the outside of the cell. Periodic striations along the entire shaft were observed after preparing the cells in a special way. The tip of the shaft showed an electron-dense specialization. Several unusual forms of primary cilia were observed which were reminiscent of olfactory flagella or retinal rods.Using tubulin antibody for indirect immunofluorescence, a fluorescent rod is visible in the cells [18] which we demonstrate is identical with the primary cilium.  相似文献   

12.
Fine structural investigation of surgically removed human pituitary and parathyroid adenomas, pheochromocytomas and bronchial carcinoids revealed a hitherto undetected sequence of events in the formation of centrioles and cilia indicating that mitochondria may serve as their progenitors. The first steps seem to be the disappearance of mitochondrial cristae and a polar accumulation of a fibrillar-granular material with a subsequent increase of electron density of the double mitochondrial membranes and deposition of more electron opaque substance within and around these procentriolar bodies. This process is followed by the disintegration of the double membranes and an asymmetrical division of the electron dense aggregate. The larger part seems to be the precursor of the primary centriole (basal body) whereas the smaller one that of the secondary centriole. Formation of centrioleand rudimentary cilium-like structures was disclosed within the unaltered mitochondrial membranes of oncocytic cells present in two pituitary adenomas and in one pheochromocytoma. Accumulation of procentriolar bodies and mature centrioles, noted in some tumors, may be due to a defect in the process of centriolo- and ciliogenesis. It is conceivable that the mitochondrial genome plays an important role in formation of centrioles and cilia.  相似文献   

13.
The relationship between centriole formation and DNA synthesis was investigated by examining the effect of taxol on the centriole cycle and the initiation of DNA synthesis in synchronized cells. The centriole cycle was monitored by electron microscopy of whole-mount preparations [Kuriyama and Borisy, J. Cell Biol., 1981, 91:814-821]. A short daughter centriole appeared in perpendicular orientation to each parent during late G1 or early S and elongated slowly during S to G2. Addition of 5-20 micrograms/ml taxol to a synchronous population of cells in S phase did not inhibit centriole elongation; rather, elongation was accelerated. In contrast, when taxol was added to M phase or early G1 cells, centriole duplication was completely inhibited. The taxol block was reversible since nucleation and elongation of centrioles resumed as soon as the drug was removed. Cells exposed to taxol progressed through the cell cycle and became blocked in mitosis, as indicated by an increase in the mitotic index, but eventually the mitotic arrest was overcome, resulting in formation of multinucleated cells. A peak in mitotic index was seen in the following generation, indicating that chromosomes duplicated in the presence of taxol. Incorporation of 3H-thymidine followed by autoradiography confirmed that DNA synthesis was initiated in the presence of taxol even though formation of daughter centrioles was inhibited. It seems, therefore, that centriole duplication is not a prerequisite for entry into S phase. Since DNA synthesis has already been demonstrated not to be necessary for centriole duplication, these two events, normally coordinated in time, appear to be independent of each other.  相似文献   

14.
In an attempt to better understand the role of centrioles in vertebrate centrosomes, hydrostatic pressure was applied to isolated centrosomes as a means to disassemble centriole microtubules. Treatments of the centrosomes were monitored by analyzing their protein composition, ultrastructure, their ability to nucleate microtubules from pure tubulin, and their capability to induce parthenogenetic development of Xenopus eggs. Moderate hydrostatic pressure (95 MPa) already affected the organization of centriole microtubules in isolated centrosomes, and also impaired microtubule nucleation. At higher pressure, the protein composition of the peri-centriolar matrix (PCM) was also altered and the capacity to nucleate microtubules severely impaired. Incubation of the treated centrosomes in Xenopus egg extract could restore their capacity to nucleate microtubules after treatment at 95 MPa, but not after higher pressure treatment. However, the centriole structure was in no case restored. It is noteworthy that centrosomes treated with mild pressure did not allow parthenogenetic development after injection into Xenopus eggs, even if they had recovered their capacity to nucleate microtubules. This suggested that, in agreement with previous results, centrosomes in which centriole architecture is impaired, could not direct the biogenesis of new centrioles in Xenopus eggs. Centriole structure could also be affected by applying mild hydrostatic pressure directly to living cells. Comparison of the effect of hydrostatic pressure on cells at the G1/S border or on the corresponding cytoplasts suggests that pro-centrioles are very sensitive to pressure. However, cells can regrow a centriole after pressure-induced disassembly. In that case, centrosomes eventually recover an apparently normal duplication cycle although with some delay.  相似文献   

15.
I A Vorob'ev  Iu S Chentsov 《Tsitologiia》1985,27(10):1101-1105
Under the action of colcemid on SPEV cells the network of cytoplasmic microtubules disappears within less than 1 hour; microtubules attached to pericentriolar satellites are retained for 4 hours. The disassembly time of these microtubules does not depend on colcemide concentration. It is therefore assumed that most of the microtubules are not attached to the centrioles, but have two free ends, thus confirming a hypothesis that they are conveyer-assembled. With colcemid concentration equal to 0.5 mcg/ml, the following dynamics of events is observed for the cell centre: after the microtubules attached to the satellites had disappeared, clusters of electron dense material appear around the centrioles (6 hour incubation), then short microtubules occur among clusters (8 hour incubation) to be subsequently retained (up to 40 hour incubation).  相似文献   

16.
We identified primary cilia and centrosomes in cultured human umbilical vein endothelial cells (HUVEC) by antibodies to acetyl-alpha-tubulin and capillary morphogenesis gene-1 product (CMG-1), a human homologue of the intraflagellar transport (IFT) protein IFT-71 in Chlamydomonas. CMG-1 was present in particles along primary cilia of HUVEC at interphase and around the oldest basal body/centriole at interphase and mitosis. To study the response of primary cilia and centrosomes to mechanical stimuli, we exposed cultured HUVEC to laminar shear stress (LSS). Under LSS, all primary cilia disassembled, and centrosomes were deprived of CMG-1. We conclude that the exposure to LSS ends the IFT in cultured endothelial cells.  相似文献   

17.
In vertebrate cells, the centrosome consists of a pair of centrioles and surrounding pericentriolar material. Using anti-Golgi 58K protein antibodies that recognize formiminotransferase cyclodeaminase (FTCD), we investigated its localization to the centrosome in various cultured cells and human oviductal secretory cells by immunohistochemistry. In addition to the Golgi apparatus, FTCD was localized to the centrosome, more abundantly around the mother centriole. The centrosome localization of FTCD continued throughout the cell cycle and was not disrupted after Golgi fragmentation, which was induced by colcemid and brefeldin A. Centriole microtubules are polyglutamylated and stable against tubulin depolymerizing drugs. FTCD in the centrosome may be associated with polyglutamylated residues of centriole microtubules and may play a role in providing centrioles with glutamate produced by cyclodeaminase domains of FTCD.  相似文献   

18.
In HeLa, PK, 3T3, PtK1 cells and rat embryo fibroblasts (REF), antibodies against acetylated tubulin stained centrioles, primary cilia, some cytoplasmic microtubules and microtubule bundles of the mid-body. The primary cilia were stained more intensively than cytoplasmic microtubules and could easily be distinguished. This makes it possible to detect the primary cilia in cultured cells and to estimate their number by light microscopy. The four cultures studied had 1/4 to 1/3 of interphase cells with detectable primary cilia, and only in HeLa cells the primary cilia were very rare. Comparison of electron microscopic and immunofluorescence data showed that the frequencies of occurrence of the primary cilia in four tissue cultures determined by these two methods were the same. Therefore, antibodies against acetylated tubulin can be used to study the primary cilia. In synchronized mitotic fibroblasts (3T3 and REF) the primary cilia appeared first 2 h after the cells had been plated on coverslips, which is 1 h after the cells had entered the interphase. Four hours after plating the number of ciliated cells reached the average level for nonsynchronous population. This model can be used for further studies of the expression of primary cilia.  相似文献   

19.
CO25 cells, a mouse myoblast line, contain multiple centrioles and primary cilia. A most unusual feature has been the finding of large numbers of separate structures in single cells—up to a maximum of nine centrioles, six primary cilia, and 12 of both organelles together. Aberrant multipolar spindles were occasionally seen containing variable numbers of centrioles. This strongly suggests that cells containing supernumerary centrioles and cilia are lost during mitosis, and that additional centriolar structures are generated during each interphase. No change in centriole or primary cilium frequency was detected after inducing the differentiation of myoblasts into myotubes. However, a significant migration of these structures occurred from a perinuclear to a supranuclear position prior to and during the phase of myoblast elongation. This shift was not maintained during cell fusion, when a net migration back to the periphery was observed, suggesting that it may have some function in relation to cell elongation and the change in the pattern of microtubule distribution which occurs as part of the process.  相似文献   

20.
One of the spindle poles of mitotic PK cells was irradiated with UV microbeam in metaphase or in anaphase. Electron microscopy showed that immediately after irradiation the microtubules around the centrosome were maintained, and that the ultrastructure of both irradiated and nonirradiated poles was similar. After microirradiation of the centrosome in metaphase, the mitotic halo around this centrosome was retained, but in due time the number of microtubules was getting less compared to that around the nonirradiated centrosome. When daughter cells with irradiated centrosomes are passing into the interphase, their centrioles are not separated from each other, no primary cilia are formed, and no replication of centrioles occurs. In the interphase cells with irradiated centrosomes, satellites are formed on the active centriole, but centrosome-attached microtubules are practically absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号