首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protease secreted by the parasitic helminth Fasciola hepatica, a 37-kDa procathepsin L1 (FheproCL1), autocatalytically processes and activates to its mature enzyme (FheCL1) over a wide pH range of 7.3 to 4.0, although activation is more rapid at low pH. Maturation initiates with cleavages of a small proportion of molecules within the central region of the prosegment, possibly by intramolecular events. However, activation to fully mature enzymes is achieved by a precise intermolecular cleavage at a Leu-12-Ser-11 downward arrowHis-10 sequence within the nonconserved C-terminal region of the prosegment. The importance of this cleavage site in enzyme activation was demonstrated using an active site variant FheproCL1Gly26 (Cys26 to Gly26) and a double variant FheproCL1Pro-12/Gly26 (Leu-12 to Pro-12), and although both of these variants cannot autocatalytically process, the former is susceptible to trans-processing at a Leu-12-Ser-11 downward arrowHis-10 sequence by pre-activated FheCL1, but the latter is not. Another F. hepatica secreted protease FheCL2, which, unlike FheCL1, can readily accept proline in the S2 subsite of its active site, can trans-process the double variant FheproCL1Pro-12/Gly26 by cleavage at the Pro-12-Ser-11 downward arrowHis-10 sequence. Furthermore, the autoactivation of a variant enzyme with a single replacement, FheproCL1Pro-12, was very slow but was increased 40-fold in the presence of FheCL2. These studies provide a molecular insight into the regulation of FheproCL1 autocatalysis.  相似文献   

2.
Cappetta M  Roth I  Díaz A  Tort J  Roche L 《Biological chemistry》2002,383(7-8):1215-1221
The N-terminal propeptides of cysteine proteinases play regulatory roles in the folding and stability of their catalytic domains, as well as being potent and highly specific inhibitors of their parental mature enzymes. Cysteine proteinases play a major role in the biology of the parasitic trematode Fasciola hepatica; in particular, this organism secretes significant amounts of cathepsin L enzymes. The isolated propeptide of F. hepatica cathepsin L1 functioned as a chaperone for the mature enzyme in renaturation experiments. A double point mutation (N701/F721) within the GxNxFxD motif of the propeptide affected its conformation and markedly decreased its affinity for the mature enzyme. When this mutation was introduced into preprocathepsin L1 expressed in yeast, the secretion of active enzyme dropped dramatically. However, significant enzyme activity was recovered from the culture supernatants after denaturation and renaturation in the presence of native propeptide. Thus, the variant prosegment gave rise to an enzyme with altered conformation, which could be refolded to the active form with the assistance of the native propeptide.  相似文献   

3.
Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for autocatalytic cleavage by cathepsin Ls were preserved.  相似文献   

4.
Besides acting as an inhibitor, the propeptide of human cathepsin B exerts an important auxiliary function as a chaperone in promoting correct protein folding. To explore the ability of N-terminally truncated forms of procathepsin B to fold into enzymatically active proteins, we produced procathepsin B variants progressively lacking N-terminal structural elements in baculovirus-infected insect cells. N-terminal truncation of the propeptide by up to 22 amino acids did not impair the production of activable procathepsin B. Secreted forms lacking the first 20, 21, or 22 amino acids spontaneously generated mature cathepsin B through autocatalytic processing, demonstrating that the first alpha-helix (Asp11-Arg20) is necessary for efficient inhibition of the enzyme by its propeptide. In contrast, proenzymes lacking the N-terminal part including the first beta-sheet (Trp24-Ala26) of the propeptide or containing an amino acid mutation directly preceding this beta-sheet were no longer properly folded. This shows that interactions between Trp24 of the propeptide and Tyr183, Tyr188, and Phe180 of the mature enzyme are important for stabilization and essential for procathepsin B folding. Thus, proenzyme forms missing more than the N-terminal 22 amino acids of the propeptide (notably truncated cathepsin B produced by the mRNA splice variant lacking exons 2 and 3, resulting in a propeptide shortened by 34 amino acids) are devoid of proteolytic activity because they cannot fold correctly. Thus, any pathophysiological involvement of truncated cathepsin B must be ascribed to properties other than proteolysis.  相似文献   

5.
A cDNA clone encoding the human cysteine protease cathepsin L was expressed at high levels in Escherichia coli in a T7 expression system. The insoluble recombinant enzyme was solubilized in urea and refolded at alkaline pH. 38-kDa procathepsin L was purified by gel filtration at pH 8.0, and a 29-kDa form of the enzyme was purified by gel filtration after autoprocessing of the proenzyme at pH 6.5. The kinetic properties of the 29-kDa species of recombinant cathepsin L were similar to those published for the human liver enzyme (Mason, R. W., Green, G. D. J., and Barrett, A.J. (1985) Biochem. J. 226, 233-241), using benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide as substrate. However, the stability of the recombinant enzyme, and its pH optimum for this substrate was shifted to a higher pH. Structure-function studies of cathepsin L were performed by constructing mutations in either the propeptide portion or the carboxyl-terminal light chain portion of the protein. These constructions were expressed in the E. coli system, and enzymatic activities were assayed following solubilization, renaturation, and gel filtration chromatography of the mutated proteins. Deletions of increasing size in the propeptide resulted in large proportional losses of activity, indicating that the propeptide is essential for proper enzyme folding and/or processing in this renaturation system. Deletion of part of the light chain containing a disulfide-forming cysteine residue or a single amino acid substitution of alanine for this cysteine residue resulted in almost complete loss of activity. These data suggest that the disulfide bond joining the heavy and light chains of cathepsin L is essential for enzymatic activity.  相似文献   

6.
An alternate targeting pathway for procathepsin L in mouse fibroblasts   总被引:2,自引:0,他引:2  
In transformed mouse fibroblasts, a significant proportion of the lysosomal cysteine protease cathepsin L remains in cells as an inactive precursor which associates with membranes by a mannose phosphate-independent interaction. When microsomes prepared from these cells were resolved on sucrose gradients, this procathepsin L was localized in dense vesicles distinct from those enriched for growth hormone, which is secreted constitutively when expressed in fibroblasts. Ultrastructural studies using antibodies directed against the propeptide to avoid detection of the mature enzyme in lysosomes revealed that the proenzyme was concentrated in dense cores within small vesicles and multivesicular endosomes which labeled with antibodies specific for CD63. Consistent with the resemblance of these cores to those of regulated secretory granules, secretion of procathepsin L from fibroblasts was modestly stimulated by phorbol, 12-myristate, 13-acetate. When protein synthesis was blocked with cycloheximide and lysosomal proteolysis inhibited with leupeptin, procathepsin L was found to gradually convert to the active single-chain protease. The data suggest that when synthesis levels are high, a portion of the procathepsin L is packaged in dense cores within multivesicular endosomes localized near the plasma membrane. Gradual activation of this proenzyme achieves targeting of the proenzyme to lysosomes by a mannose phosphate receptor-independent pathway.  相似文献   

7.
Cathepsin B, a lysosomal cysteine protease, is synthesized as a glycoprotein with two N-linked oligosaccharide chains, one of which is in the propeptide region while the other is in the mature region. When cultured rat hepatocytes were labeled with [(32)P]phosphate, (32)P-labeled cathepsin B was immunoprecipitated only in the proform from cell lysates and medium. Either Endo H or alkaline phosphatase treatment of (32)P-labeled procathepsin B demonstrated the acquisition of a mannose 6-phosphate (Man 6-P) residue on high mannose type oligosaccharides. To identify the site of phosphorylation, immunoisolated (35)S- or (32)P-labeled procathepsin B was incubated with purified lysosomal cathepsin D, since cathepsin D cleaves 48 amino acid residues from the N-terminus of procathepsin B, in which one N-linked oligosaccharide chain was also included [Kawabata, T. et al. (1993) J. Biochem. 113, 389-394]. Treatment of intracellular (35)S-labeled procathepsin B with a molecular mass of 39-kDa with cathepsin D resulted in the production of the 31-kDa intermediate form, but the (32)P-label incorporated into procathepsin B disappeared after treatment with cathepsin D. These results indicate that the phosphorylation of procathepsin B is restricted to an oligosaccharide chain present in the propeptide region. Interestingly, cathepsin B sorting to lysosomes was not inhibited by NH(4)Cl treatment and about 90% of the intracellular procathepsin B initially phosphorylated was secreted into the medium without being dephosphorylated intracellularly, and did not bind significantly to cation-independent-Man 6-P receptor, suggesting the failure of Man 6-P-dependent transport of procathepsin B to lysosomes. Additionally, about 50% of the newly synthesized (35)S-labeled cathepsin B was retained in the cells in mature forms consisting of a 29-kDa single chain form and a 24-kDa two chain form, while part of the procathepsin B was associated with membranes in a Man 6-P-independent manner. Taken together, these results show that in rat hepatocytes, cathepsin B is targeted to lysosomes by an alternative mechanism(s) other than the Man 6-P-dependent pathway.  相似文献   

8.
We have studied the role of N-linked oligosaccharides and proteolytic processing on the targeting of cathepsin D to the lysosomes in the human hepatoma cell line HepG2. In the presence of tunicamycin cathepsin D was synthesized as an unglycosylated 43-kDa proenzyme which was proteolytically processed via a 39-kDa intermediate to a 28-kDa mature form. Only a small portion was secreted into the culture medium. During intracellular transport the 43-kDa procathepsin D transiently became membrane-associated independently of binding to the mannose 6-phosphate receptor. Subcellular fractionation showed that unglycosylated cathepsin D was efficiently targeted to the lysosomes via intermediate compartments similar to the enzyme in control cells. The results show that in HepG2 cells processing and transport of cathepsin D to the lysosomes is independent of mannose 6-phosphate residues. Inhibition of the proteolytic processing of 53-kDa procathepsin D by protease inhibitors caused this form to accumulate intracellularly. Subcellular fractionation revealed that the procathepsin D was transported to lysosomes, thereby losing its membrane association. Procathepsin D taken up by the mannose 6-phosphate receptor also transiently became membrane-associated, probably in the same compartment. We conclude that the mannose 6-phosphate-independent membrane-association is a transient and compartment-specific event in the transport of procathepsin D.  相似文献   

9.
G E Conner  G Richo 《Biochemistry》1992,31(4):1142-1147
Procathepsin D is the intracellular aspartyl protease precursor of cathepsin D, a major lysosomal enzyme. Procathepsin D is rapidly processed inside the cell, and, thus, examination of its proteolyic activation and structure has been difficult. To study this proenzyme, a nonglycosylated form of the human fibroblast procathepsin D was expressed in Escherichia coli, refold in vitro, and purified by affinity chromatography on pepstatinyl agarose. Sequence analysis of the refolded, autoactivated enzyme allowed determination of the autoproteolytic cleavage site. The sequence surrounding this cleavage site between residues LeuP26 and IleP27 (in the "pro" region) resembled the first cleavage site found during activation of other aspartyl proteases. Thus, the autoactivated procathepsin D is analogous to the pepsin activation intermediate, which has been termed pseudopepsin. The enzymatic activity, thermal and pH stability, and fluorescence spectra of pseudocathepsin D were compared to mature, predominantly two-chain, cathepsin D isolated from human placenta. The results indicated that pseudocathepsin D and mature enzyme have a similar Km toward a peptide substrate and cleave a protein substrate at identical sites. Temperature stability of the recombinant enzyme was similar to that of the tissue-derived enzyme. However, the recombinant enzyme had increased stability at low pH when compared to the glycosylated tissue-derived two-chain cathepsin D. Fluorescence spectra of the recombinant and tissue-derived enzymes were identical. Thus, the absence of asparagine-linked oligosaccharides and the presence of the remaining segment of propeptide did not significantly alter the structural and enzymatic properties of the enzyme.  相似文献   

10.
A 30-kDa protease, purified previously from Fasciola hepatica, was sequenced and the first 15 N-terminal residues were found to be 100% homologous to a region in the protein Fcp1c, which was cloned and expressed from F. hepatica. This terminal region was also 53 and 54% identical to two other cathepsin L-like proteases isolated from the same source. The 30-kDa protease demonstrated a specificity different from humancathepsin L when assayed with novel peptidyl enediones of the type Z-Phe-Ala-CH&dbond;CH(2)-CO(2)R (where R = Me/Et/Bu(t)). The ethyl ester peptide was a more efficient inhibitor of the protease than the corresponding methyl ester. This is in contrast to bovine cathepsin B and human cathepsin L where both are more readily inhibited by the methyl, rather than the ethyl ester peptide. These differences in the inhibition of the novel parasite protease may allow it to be exploited as a chemotherapeutic target.  相似文献   

11.
Our recent studies have shown that cathepsin L is first synthesized as an enzymatically inactive proform in endoplasmic reticulum and is successively converted into an active form during intracellular transport and we postulated that aspartic proteinases would be responsible for the intracellular propeptide-processing step of procathepsin L accompanied by the activation of enzyme (Y. Nishimura, T. Kawabata, and K. Kato (1988) Arch. Biochem. Biophys. 261, 64-71). To better understand this proposed mechanism, we investigated the effect of pepstatin, a potent inhibitor of aspartic proteinases, on the intracellular processing kinetics of cathepsin L analyzed by pulse-chase experiments in vivo with [35S]methionine in the primary cultures of rat hepatocytes. In the pepstatin-treated cells, the proteolytic conversion of cellular procathepsin L of 39 kDa to the mature enzyme was significantly inhibited and considerable amounts of proenzyme were found in the cell after 5-h chase periods. Further, the subcellular fractionation experiments demonstrated that the intracellular processing of procathepsin L in the high density lysosomal fraction was significantly inhibited and that considerable amounts of the procathepsin L form were still observed in the light density microsomal fraction after 2 h of chase. These results suggest that pepstatin treatment caused a significant inhibitory effect on the intracellular processing and also on the intracellular movement of procathepsin L from the endoplasmic reticulum to the lysosomes. These findings provide the first evidence showing that aspartic proteinase may play an important role in the intracellular proteolytic processing and activation of lysosomal cathepsin L in vivo. Therefore, we suggest that cathepsin D, a major lysosomal aspartic proteinase, is more likely to be involved in this proposed model in the lysosomes.  相似文献   

12.
In vitro, procathepsin D is activated to pseudocathepsin D by incubation at low pH. To investigate the mechanism of this activation, recombinant human procathepsin D and two mutants were generated in a baculovirus expression system. One mutant carried a point mutation within the catalytic domain, which resulted in a catalytically inactive enzyme form (D77A). The other carried a point mutation within the propeptide, which prevented activation by processing at the 'autoproteolysis-site' (L26P). Neither mutant is capable of processing itself to form pseudocathepsin D, and L26P is not able to process D77A. Despite the inability of L26P to cleave either its own or a wild-type prosequence, it did exhibit activity against a synthetic peptide substrate. The ability of intact precursor (zymogen) to cleave a peptide, but not a protein substrate, offers new insights into the mechanism of inhibition by the propeptide. Mature cathepsin D can process the inactive D77A mutant to the pseudoform, demonstrating that processed species are capable of cleaving zymogen molecules in an intermolecular interaction. In addition, kinetic studies provide evidence for a two-phase mechanism for the conversion of procathepsin D to pseudocathepsin D, one phase where the first molecules of pseudocathepsin D are formed at a low rate and a second phase where the process is autocatalytically accelerated by newly formed pseudocathepsin D molecules. Finally, with the help of the mutants L26P and D77A it was observed that at least two additional proteinase activities, found in conditioned media from insect cell culture, are capable of activating procathepsin D by cleaving it within the proregion. This observation suggests that there are likely to be multiple proteinases in the extracellular matrix that are capable of activating procathepsin D, thereby triggering the second autocatalytic phase. This may also be important for solid tumors, where the presence of cathepsin D has been correlated with tumor growth and invasion.  相似文献   

13.
14.
To investigate the intracellular transport mechanism of lysosomal cathepsin L in yeast cells, we attempted to produce mouse cathepsin L in Saccharomyces cerevisiae by placing the coding region under the control of the promoter of the yeast glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. Immunoblotting analysis by the use of an antibody specific for rat cathepsin L revealed that the yeast cells carrying the cathepsin L coding sequence produced 39- and 30-kDa products, which correspond to the rat procathepsin L and the single-chain form of mature cathepsin L, respectively. The precursor polypeptide showed sensitivity toward endoglycosidase H treatment. Cell fractionation experiments demonstrated that the processed form of 30-kDa cathepsin L was found to be colocalized to the yeast vacuole with the marker enzyme carboxypeptidase Y in a Ficoll step gradient. In the prepared vacuolar fraction, a considerable amount of cathepsin L was revealed to be cofractionated with the vacuolar membranes. Furthermore, the phase separation experiments with Triton X-114 provide the first evidence showing that the mature form of cathepsin L polypeptide is strongly associated with the vacuolar membranes. Therefore, the present results suggest that the mouse cathepsin L precursor polypeptide is initially synthesized as the proenzyme in the yeast cells and then correctly delivered to the vacuole. During the intracellular sorting pathway, the procathepsin L would undergo the post-translational proteolytic processing step to generate the mature enzyme. Based on these lines of evidence, we propose that cathepsin L is recognized by mechanisms similar to those for the intracellular sorting and processing of vacuolar proteins in the yeast cells.  相似文献   

15.
The acceleration effect of chondroitin-4-sulfate(CS-) proteoglycan on the processing of procathepsin L in vitro was investigated using enzyme purified from the culture medium of MLC cells. Procathepsin L was slightly processed even when it was incubated without CS-proteoglycan for 60 min in 50 mm acetate buffer, pH 5.5, and trace amounts of the 31 kDa mature form and 35-38 kDa intermediates of cathepsin L were formed. On the other hand, in the presence of CS-proteoglycan, procathepsin L was completely converted to the mature form within the same 60 minute time period. Moreover, Z-Phe-Arg-MCA hydrolyzing activity was increased significantly by the incubation with CS-proteoglycan, while no considerable increase in the activity was observed during the incubation without CS-proteoglycan. Since the specific cathepsin L inhibitor, CLIK-195, inhibited the processing of procathepsin L accelerated by CS-proteoglycan, the trace amount of cathepsin L activity may participate in the processing. These results suggest that CS-proteoglycan may play a role in accelerating the processing of procathepsin L as an endogenous enhancer in the extracellular environment in vivo.  相似文献   

16.
Processing of pulmonary surfactant protein B by napsin and cathepsin H   总被引:10,自引:0,他引:10  
Surfactant protein B (SP-B) is an essential constituent of pulmonary surfactant. SP-B is synthesized in alveolar type II cells as a preproprotein and processed to the mature peptide by the cleavage of NH2- and COOH-terminal peptides. An aspartyl protease has been suggested to cleave the NH2-terminal propeptide resulting in a 25-kDa intermediate. Napsin, an aspartyl protease expressed in alveolar type II cells, was detected in fetal lung homogenates as early as day 16 of gestation, 1 day before the onset of SP-B expression and processing. Napsin was localized to multivesicular bodies, the site of SP-B proprotein processing in type II cells. Incubation of SP-B proprotein from type II cells with a crude membrane extract from napsin-transfected cells resulted in enhanced levels of a 25-kDa intermediate. Purified napsin cleaved a recombinant SP-B/EGFP fusion protein within the NH2-terminal propeptide between Leu178 and Pro179, 22 amino acids upstream of the NH2 terminus of mature SP-B. Cathepsin H, a cysteine protease also implicated in pro-SP-B processing, cleaved SP-B/EGFP fusion protein 13 amino acids upstream of the NH2 terminus of mature SP-B. Napsin did not cleave the COOH-terminal peptide, whereas cathepsin H cleaved the boundary between mature SP-B and the COOH-terminal peptide and at several other sites within the COOH-terminal peptide. Knockdown of napsin by small interfering RNA resulted in decreased levels of mature SP-B and mature SP-C in type II cells. These results suggest that napsin, cathepsin H, and at least one other enzyme are involved in maturation of the biologically active SP-B peptide.  相似文献   

17.
The molecular mechanism by which heparin modulates the processing of procathepsin L in the extracellular environment is proposed. We show that heparin reduces the stability of the pro form of cathepsin L at pH 5 by binding to a putative heparin binding motif (BBXB) in the pro-domain. Mutations to this motif on procathepsin L reduce heparin binding affinity and heparin-induced destabilization; in contrast, heparin only slightly destabilizes the mature cathepsin L domain. Gel analysis further shows that heparin makes procathepsin L a much better substrate for cathepsin L. Thus, heparin enhances the rate of zymogen activation by destabilization upon binding to the BBXB motif. Determining the mechanism by which procathepsin L is activated in the extracellular matrix is important to the understanding of the role that cathepsin L plays in tumour invasion.  相似文献   

18.
Lysosomal cysteine cathepsin B participates in numerous diverse cellular processes. In acquiring its activity, the proregion, which blocks the substrate-binding site in the proenzyme, needs to be cleaved off. Here we demonstrate that polyanionic polysaccharides, glycosaminoglycans (GAGs), can accelerate the autocatalytic removal of the propeptide and subsequent activation of cathepsin B. We show that naturally occurring GAGs such as chondroitin sulfates and heparin, as well as the synthetic analog dextran sulfate, accelerate the processing in a concentration-dependent manner. Heparin oligosaccharides down to the size of tetrasaccharides were efficient in accelerating the procathepsin B processing, whereas disaccharides were without effect. Further, the ability of the GAGs to accelerate procathepsin B processing was sensitive to increasing NaCl concentrations, indicating that electrostatic interaction between the GAGs and procathepsin B are operative in the accelerating effect. Also the processing of the catalytic procathepsin B mutant by wild type cathepsin B was enhanced in the presence of GAGs, suggesting that GAGs induce a conformational change in procathepsin B, converting it into a better substrate. Site-directed mutagenesis showed that His(28), Lys(39), and Arg(40), located within the procathepsin B propeptide, have significant roles in the acceleration of procathepsin B activation induced by short GAGs. Because procathepsin B and GAGs often co-localize in vivo, we propose that GAGs may play a physiological role in the activation of procathepsin B.  相似文献   

19.
Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain.  相似文献   

20.
Fasciola hepatica secretes cathepsin L proteases that facilitate the penetration of the parasite through the tissues of its host, and also participate in functions such as feeding and immune evasion. The major proteases, cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) are members of a lineage that gave rise to the human cathepsin Ls, Ks and Ss, but while they exhibit similarities in their substrate specificities to these enzymes they differ in having a wider pH range for activity and an enhanced stability at neutral pH. There are presently 13 Fasciola cathepsin L cDNAs deposited in the public databases representing a gene family of at least seven distinct members, although the temporal and spatial expression of each of these members in the developmental stage of F. hepatica remains unclear. Immunolocalisation and in situ hybridisation studies, using antibody and DNA probes, respectively, show that the vast majority of cathepsin L gene expression is carried out in the epithelial cells lining the parasite gut. Within these cells the enzyme is packaged into secretory vesicles that release their contents into the gut lumen for the purpose of degrading ingested host tissue and blood. Liver flukes also express a novel multi-domain cystatin that may be involved in the regulation of cathepsin L activity. Vaccine trials in both sheep and cattle with purified native FheCL1 and FheCL2 have shown that these enzymes can induce protection, ranging from 33 to 79%, to experimental challenge with metacercariae of F. hepatica, and very potent anti-embryonation/hatch rate effects that would block parasite transmission. In this article we review the vaccine trials carried out over the past 8 years, the role of antibody and T cell responses in mediating protection and discuss the prospects of the cathepsin Ls in the development of first generation recombinant liver fluke vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号