首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
Although the effects of constant temperatures on hatchling traits have been extensively studied in reptiles, the effects of fluctuating temperatures remain poorly understood. Eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) were incubated at a constant temperatures (28 °C) and two fluctuating temperatures (28±3 °C and 28±6 °C) to test for the influence of thermal environment on incubation duration, hatchling traits, and post-hatching growth. Incubation duration was shorter at constant temperature than at fluctuating temperatures. The sex ratio of hatchlings varied among temperature treatments, with more females from 28±6 °C than from 28 °C. The size and mass were greater for hatchlings from a constant temperature than from fluctuating ones, but this difference in body size disappeared when the hatchlings were 3 months old. In addition, the swimming ability, survival, and growth of hatchlings from fluctuating temperatures did not differ from those of hatchlings from constant temperature, when they were kept at an artificial environment without food scarcity or predation. Therefore, the thermal environments with various temperature fluctuations used in this study do not significantly affect fitness-related hatchling traits in this species.  相似文献   

2.
Ji X  Gao JF  Han J 《Zoological science》2007,24(4):384-390
Most studies on egg incubation in reptiles have relied on constant temperature incubation in the laboratory rather than on simulations of thermal regimes in natural nests. The thermal effects on embryos in constant-temperature studies often do not realistically reflect what occurs in nature. Recent studies have increasingly recognized the importance of simulating natural nest temperatures rather than applying constant-temperature regimes. We incubated Bungarus multicintus eggs under three constant and one fluctuating-temperature regimes to evaluate the effects of constant versus fluctuating incubation temperatures on hatching success and hatchling phenotypes. Hatching success did not differ among the four treatments, and incubation temperature did not affect the sexual phenotype of hatchlings. Incubation length decreased as incubation temperature increased, but eggs incubated at fluctuating temperatures did not differ from eggs incubated at constant temperatures with approximately the same mean in incubation length. Of the hatchling phenotypes examined, residual yolk, fat bodies and locomotor performance were more likely affected by incubation temperature. The maximal locomotor speed was fastest in the fluctuating-temperature and 30 degrees C treatments and slowest in the 24 degrees C treatment, with the 27 degrees C treatment in between. The maximal locomotor length was longest in the fluctuating-temperature treatment and shortest in the 24 degrees C and 27 degrees C treatments, with the 30 degrees C treatment in between. Our results show that fluctuating incubation temperatures do not influence hatching success and hatchling size and morphology any differently than constant temperatures with approximately the same mean, but have a positive effect on locomotor performance of hatchlings.  相似文献   

3.
The phenotypic variance is assumed to be greater in a more heterogeneous environment. The validity of this assumption is important for microevolutionists to extrapolate results from the laboratory to field environments. We subjected clutches of eggs from common snapping turtles (Chelydra serpentina) to a split-family design to evaluate the variability in incubation time and four size traits of neonates from eggs incubated in the laboratory and those left in situ. Mean size measurements were similar between the laboratory and the field, but incubation time was systematically longer in the field. We found no tendency among clutches for hatchlings resulting from eggs incubated in laboratory or field environments to demonstrate greater variability. Also contrary to expectation, clutches that experienced greater thermal variation in the field did not exhibit greater variation in phenotypic traits. Consequently, extrapolating results from the laboratory to the field may not always be problematic for microevolutionary analyses.  相似文献   

4.
Hydric environments are hypothesized to have minor effects on the embryonic development of rigid-shelled turtle eggs due to the low water permeability of the eggshell. However, the water reserve in the eggs may still influence their resistance to environmentally induced dehydration. We incubated rigid-shelled turtle eggs (Pelodiscus sinensis) on different moist substrates (from ? 12 to ? 750 kPa) to test the hypothesis that small rigid-shelled eggs would be sensitive to hydric environments. The hydric treatment significantly affected the incubation period, with eggs incubated in the moistest and driest substrates taking longer to hatch than those on the medium-moisture substrates. Hatching success was slightly lower for eggs incubated in dry conditions than those in wet conditions, but the difference was not statistically significant. The heart rates of early embryos were lower on moist substrates than those on dry substrates, but this difference disappeared in late embryos. Hatchlings from the moistest substrate were larger (in carapace length and width) and heavier than those from drier substrates. However, the dry body mass of the hatchlings did not differ among the hydric treatments. The functional performance (righting response) of the hatchlings was affected by the hydric environment. The time to right was shorter for the hatchlings from the substrate of ? 12 kPa than those from ? 220 kPa. These results are consistent with the hypothesis that the hydric environment may significantly affect developing embryos and the resulting hatchlings in turtle species, such as P. sinensis, with small rigid-shelled eggs.  相似文献   

5.
To understand how nest temperatures influence phenotypic traits of reptilian hatchlings, the effects of fluctuating temperature on hatchling traits must be known. Most investigations, however, have only considered the effects of constant temperatures. We incubated eggs of Takydromus septentrionalis (Lacertidae) at constant (24 degrees C, 27 degrees C, 30 degrees C and 33 degrees C) and fluctuating temperatures to determine the effects of these thermal regimes on incubation duration, hatching success and hatchling traits (morphology and locomotor performance). Hatching success at 24 degrees C and 27 degrees C was higher, and hatchlings derived from these two temperatures were larger and performed better than their counterparts from 30 degrees C and 33 degrees C. Eggs incubated at fluctuating temperatures exhibited surprisingly high hatching success and also produced large and well-performed hatchlings in spite of the extremely wide range of temperatures (11.6-36.2 degrees C) they experienced. This means that exposure of eggs to adversely low or high temperatures for short periods does not increase embryonic mortality. The variance of fluctuating temperatures affected hatchling morphology and locomotor performance more evidently than did the mean of the temperatures in this case. The head size and sprint speed of the hatchlings increased with increasing variances of fluctuating temperatures. These results suggest that thermal variances significantly affect embryonic development and phenotypic traits of hatchling reptiles and are therefore ecologically meaningful.  相似文献   

6.
Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current ‘cold’ nests (mean = 23.2 °C, range 10–33 °C) and future ‘hot’ nests (27.0 °C, 14–37 °C). ‘Hot’ incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot‐incubated hatchlings had higher annual mortality (99%, 97%) than cold‐incubated (11%, 58%) or wild‐born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78– 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52– 1.0) with mean times to extinction of 18–44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest‐site choices. Over the period 1992–2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest‐site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments.  相似文献   

7.
Incubation temperature has significant developmental effects on oviparous animals, including affecting sexual differentiation for several species. Incubation temperature also affects traits that can influence survival, a theory that is verified in this study for the Northwest Atlantic loggerhead sea turtle (Caretta caretta). We conducted controlled laboratory incubations and experiments to test for an effect of incubation temperature on performance of loggerhead hatchlings. Sixty-eight hatchlings were tested in 2011, and 31 in 2012, produced from eggs incubated at 11 different constant temperatures ranging from 27°C to 33°C. Following their emergence from the eggs, we tested righting response, crawling speed, and conducted a 24-hour long swim test. The results support previous studies on sea turtle hatchlings, with an effect of incubation temperature seen on survivorship, righting response time, crawling speed, change in crawl speed, and overall swim activity, and with hatchlings incubated at 27°C showing decreased locomotor abilities. No hatchlings survived to be tested in both years when incubated at 32°C and above. Differences in survivorship of hatchlings incubated at high temperatures are important in light of projected higher sand temperatures due to climate change, and could indicate increased mortality from incubation temperature effects.  相似文献   

8.
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 °C, 26 °C, 28 °C and 31 °C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 °C and 28 °C had wider heads than hatchlings incubated at 24 °C and 31 °C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 °C than at 26 °C, 28 °C and 31 °C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass. Accepted: 18 March 1998  相似文献   

9.
Evolutionary origins of viviparity among the squamate reptiles are strongly associated with cold climates, and cold environmental temperatures are thought to be an important selective force behind the transition from egg-laying to live-bearing. In particular, the low nest temperatures associated with cold climate habitats are thought to be detrimental to the developing embryos or hatchlings of oviparous squamates, providing a selective advantage for the retention of developing eggs in utero, where the mother can provide warmer incubation temperatures for her eggs (by actively thermoregulating) than they would experience in a nest. However, it is not entirely clear what detrimental effects cold incubation temperatures may have on eggs and hatchlings, and what role these effects may play in favouring the evolution of viviparity. Previous workers have suggested that viviparity may be favoured in cold climates because cold incubation temperatures slow cmbryogenesis and delay hatching of the eggs, or because cold nest temperatures are lethal to developing eggs and reduce hatching success. However, incubation temperature has also been shown to have other, potentially long-term, effects on hatchling phcnotypcs, suggesting that cold climates may favour viviparity because cold incubation temperatures produce offspring of poor quality or low fitness. We experimentally incubated eggs of the oviparous phrynosomatid lizard, Sceloporus virgatus, at temperatures simulating nests in a warm (low elevation) habitat, as is typical for this species, and nests in a colder (high elevation) habitat, to determine the effects of cold incubation temperatures on embryonic development and hatchling phenotypes. Incubation at cold nest temperatures slowed embryonic development and reduced hatching success, but also affected many aspects of the hatchlings' phenotypes. Overall, the directions of these plastic responses indicated that cold-incubated hatchlings did indeed exhibit poorer quality phenotypes; they were smaller at hatching (in body length) and at 20 days of age (in length and mass), grew more slowly (in length and mass), had lower survival rates, and showed greater fluctuating asymmetry than their conspecifics that were incubated at warmer temperatures. Our findings suggest that cold nest temperatures are detrimental to S. virgatus, by delaying hatching of their eggs, reducing their hatching success, and by producing poorer quality offspring. These negative effects would likely provide a selective advantage for any mechanism through which these lizards could maintain warmer incubation temperatures in cold climates, including the evolution of prolonged egg retention and viviparity.  相似文献   

10.
Variations in water potential have marked effects on aspects of embryological development in reptiles. Therefore variation in the salinity of the incubation environment is likely to have significant consequences on the early life stage. The combination of an extended incubation period, coupled with the real threat of soil salinisation within their range makes Chelodina expansa an ideal model to assess the influence of salinity on turtle embryology. We quantified the influence of salt on the development of C. expansa hatchlings in four substrate treatments varying in salinity. Embryos incubated in higher salinities had 39 % less survival than those incubated in substrates with freshwater. Hatchlings that emerged from eggs in saline treatments were smaller with higher concentrations of plasma sodium, chloride, urea, and potassium. The physiological effects of salinity mirror those of turtles incubated in drier media with low water potential. Salinisation of river banks has the potential to reduce hatching success and fitness of nesting reptiles.  相似文献   

11.
It has been documented in some reptiles that fluctuating incubation temperatures influence hatchling traits differently than constant temperatures even when the means are the same between treatments; yet whether the observed effects result from the thermal variance, temperature extremes or both is largely unknown. We incubated eggs of the checkered keelback snake Xenochrophis piscator under one fluctuating (Ft) and three constant (24, 27 and 30 °C) temperatures to examine whether the variance of incubation temperatures plays an important role in influencing the phenotype of hatchlings. The thermal conditions under which eggs were incubated affected a number of hatchling traits (wet mass, SVL, tail length, carcass dry mass, fatbody dry mass and residual yolk dry mass) but not hatching success and the sex ratio of hatchlings. Body sizes were larger in hatchlings from incubation temperatures of 24 and 27 °C compared with the other two treatments. Hatchlings from the four treatments could be divided into two groups: one included hatchlings from the 24 and 27 °C treatments, and the other included hatchlings from the 30 °C and Ft treatments. In the Ft treatment, the thermal variance was not a significant predictor of all examined hatchling traits, and incubation length was not correlated with the thermal variance when holding the thermal mean constant. The results of this study show that the mean rather than the variance of incubation temperatures affects the phenotype of hatchlings.  相似文献   

12.
In an experiment repeated for two separate years, incubation temperature was found to affect the body size and swimming performance of hatchling green turtles (Chelonia mydas). In the first year, hatchlings from eggs incubated at 26°C were larger in size than hatchlings from 28 and 30°C, whilst in the second year hatchlings from 25.5°C were similar in size to hatchings from 30°C. Clutch of origin influenced the size of hatchlings at all incubation temperatures even when differences in egg size were taken into account. In laboratory measurements of swimming performance, in seawater at 28°C, hatchlings from eggs incubated at 25.5 and 26°C had a lower stroke rate frequency and lower force output than hatchlings from 28 and 30°C. These differences appeared to be caused by the muscles of hatchlings from cooler temperatures fatiguing at a faster rate. Clutch of origin did not influence swimming performance. This finding that hatchling males incubated at lower temperature had reduced swimming ability may affect their survival whilst running the gauntlet of predators in shallow near-shore waters, prior to reaching the relative safety of the open sea.  相似文献   

13.
As global temperatures continue to rise, so too will the nest temperatures of many species of turtles. Yet for most turtle species, including the estuarine diamondback terrapin (Malaclemys terrapin), there is limited information on embryonic sensitivity to elevated temperature. We incubated eggs of M. terrapin at three, mean temperatures (31, 34, 37 °C) under two thermal exposure regimes (constant or semi-naturally fluctuating temperature) and measured hatching success, developmental rate, and hatchling size. Hatching success was 100% at 31 °C and 67% at 34 °C, respectively; at 37 °C, all eggs failed early in the incubation period. These values were unaffected by exposure regime. The modeled LT50 (temperature that was lethal to 50% of the test population) was 34.0 °C in the constant and 34.2 °C in the fluctuating thermal regime, reflecting a steep decline in survival between 33 and 35 °C. Hatchlings having been incubated at a constant 34 °C hatched sooner than those incubated at 31 °C under either constant or fluctuating temperature. Hatchlings were smaller in straight carapace length (CL) and width after having been incubated at 34 °C compared to 31 °C. Larger (CL) hatchlings resulted from fluctuating temperature conditions relative to constant temperature conditions, regardless of mean temperature. Based upon recent temperatures in natural nests, the M. terrapin population studied here appears to possess resiliency to several degrees of elevated mean nest temperatures, beyond which, embryonic mortality will likely sharply increase. When considered within the mosaic of challenges that Maryland's M. terrapin face as the climate warms, including ongoing habitat losses due to sea level rise and impending thermal impacts on bioenergetics and offspring sex ratios, a future increase in embryonic mortality could be a critical factor for a population already experiencing ecological and physiological challenges due to climate change.  相似文献   

14.
In many reptiles, sex is determined by the temperature at which the eggs are incubated (i.e., temperature-dependent sex determination, or TSD). Past studies have shown that exogenous steroid hormones can override the effects of temperature and induce female sex determination. However, past attempts to induce male sex determination have consistently failed. In the present study, sex determination was studied in a turtle with TSD. By utilizing an incubation temperature regimen that resulted in approximately a 1:1 sex ratio in the control group, sex determination was shown to be sensitive to both exogenous androgen and estrogen treatments: androgen induced the production of male hatchlings, whereas estrogen induced the production of female hatchlings. This is the first report of an amniotic vertebrate in which an exogenous steroid hormone induces male sex determination.  相似文献   

15.
The evolutionary significance of sex-determining mechanisms, particularly temperature-dependent sex determination (TSD) in reptiles, has remained unresolved despite extensive theoretical work. To investigate the evolutionary significance of this unusual sex-determining mechanism, I incubated eggs of the common snapping turtle (Chelydra serpentina) at a male-producing temperature (26°C), a female-producing temperature (30°C), and an intermediate temperature that produced both sexes about equally (28°C). Laboratory experiments indicated that two performance variables, but no morphological measurements, were significantly influenced by incubation temperature (P ≤ 0.05): hatchlings from cooler incubation treatments swam faster than turtles from warmer incubation treatments, and hatchlings from 28°C exhibited a greater propensity to run than did individuals from 26°C and 30°C. In the field, hatchlings from the all-male and all-female producing temperatures had significantly higher first-year survivorship than did consexuals from the incubation temperature that produced both sexes (G = 6.622, P = 0.03). Significant directional selection was detected on propensity of hatchlings to run (β′ = –0.758, P = 0.05): turtles that tended to remain immobile had a higher probability of first-year survivorship than did individuals that moved readily. Thus, the effects of the gender × incubation temperature interaction on survivorship of hatchling turtles observed in the field experiment may have been mediated by temperature-dependent antipredator behavior. These results provide a possible functional explanation for the evolutionary significance of TSD in turtles that is consistent with predictions of theoretical models.  相似文献   

16.
Freshly-laid eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) from captive cohorts in Hunan, Shanghai and Jiangxi were incubated at four constant temperatures of 24, 26, 28 and 30 °C to assess the effects of incubation temperature and cohort origin on incubation duration and hatchling phenotypes. Eggs from the three cohorts differed in size and shape. Egg mass and width were greatest in the Hunan cohort, smallest in the Jiangxi cohort, with the Shanghai cohort in between. Incubation duration decreased with increasing temperature and differed among the cohorts, with longer incubation duration for eggs from the Jiangxi cohort than those from the Hunan or Shanghai cohorts. Incubation temperatures significantly affected hatchling size and hatchlings from 30 °C were smaller than those from the lower temperatures in terms of carapace size and body mass. When incubated at a common temperature, hatchlings from the Hunan and Shanghai cohorts were larger than those from the Jiangxi cohort. The swimming capacity of hatchlings was affected by incubation temperature, but did not differ among the cohorts. The characteristics of eggs and hatchlings were similar among the Hunan and Shanghai cohorts, but they differed significantly from the Jiangxi cohort.  相似文献   

17.
Wang L  Du W G  Shen J W  Zhu L J 《农业工程》2010,30(2):81-84
Freshly-laid eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) from captive cohorts in Hunan, Shanghai and Jiangxi were incubated at four constant temperatures of 24, 26, 28 and 30 °C to assess the effects of incubation temperature and cohort origin on incubation duration and hatchling phenotypes. Eggs from the three cohorts differed in size and shape. Egg mass and width were greatest in the Hunan cohort, smallest in the Jiangxi cohort, with the Shanghai cohort in between. Incubation duration decreased with increasing temperature and differed among the cohorts, with longer incubation duration for eggs from the Jiangxi cohort than those from the Hunan or Shanghai cohorts. Incubation temperatures significantly affected hatchling size and hatchlings from 30 °C were smaller than those from the lower temperatures in terms of carapace size and body mass. When incubated at a common temperature, hatchlings from the Hunan and Shanghai cohorts were larger than those from the Jiangxi cohort. The swimming capacity of hatchlings was affected by incubation temperature, but did not differ among the cohorts. The characteristics of eggs and hatchlings were similar among the Hunan and Shanghai cohorts, but they differed significantly from the Jiangxi cohort.  相似文献   

18.
Dresden Zoo bred successfully the Malaysian giant turtle (Orlitia borneensis) in summer 2012. This was the first successful breeding of this species in Germany.Little is known about biology and behaviour of this large river turtle and keeping and especially breeding of this endangered species in captivity is a rarity. In order to create optimal breeding conditions Dresden Zoo rebuilt an enclosure for the turtles in 2010. An area with soil and sand was built for the expected egg deposition. After arranged matings one female dug a nest on this area and buried her eggs. Nine eggs were secured and transferred into an incubator in a box filled with a 1:1 mixture of vermiculite and water. The average temperature was 29 °C. After problems with the temperature regulation the damaged incubator had to be replaced. Because of an estimated incubation period of 3–4 months, one egg was opened on day 127 of incubation. A live hatchling with a big yolk sac was fetched. Because of the non-reabsorbed yolk sac the hatchling was further incubated. On day 154 of incubation all eggs were manually opened and the hatchlings were fetched. All of these hatchlings showed a non-reabsorbed yolk sac and were incubated onwards in a box with wet paper towel until the yolk sac was completely reabsorbed. After that the hatchlings were housed solitarily in a box with water of approximately 4 cm height and a small land area. Two days after housing food was offered for the first time. All hatchlings accepted the offered food consisting of herbal as well as of animal products and later turtle pellets and self-made turtle jelly.Though little is known about breeding this species, the breeding success of Dresden Zoo demonstrates a possible approach to this topic. But there are still things to optimize. For example the manual hatching is something that should be avoided in future. Fertilization and hatching rate of 100% are promising and up to date eight out of nine hatchlings are still alive.  相似文献   

19.
Sea turtle eggs incubation involves natural and artificial incubation of eggs, and indeed the depth will be varied and presumably affect the development of hatchlings. For nest relocation, the researcher needs to decide on the depth to incubate the eggs. Sea turtle eggs clutches may vary between 40 and 120 eggs for the green turtle, thus using a single value as the standard procedure might affect the quality of hatchlings. Here we quantify the dimension of the natural (in-situ) nest constructed by the nester and the artificial (ex-situ) built by our ranger during nest relocation. We suggest a linear regression calculation of Y = 0.2366X + 59.3267, better predict a more accurate nest depth based on the number of eggs to imitate the natural nest.  相似文献   

20.
Environmental heterogeneity during embryonic development generates an important source of variation in offspring phenotypes and can influence the evolution of life histories. The effects of incubation temperature on offspring phenotypes in reptiles has been well documented but remains relatively unexplored in birds as their embryos typically develop over a narrow range of temperatures. Megapode birds (Order Galliformes; Family Megapodiidae) are unique in that their embryos tolerate and develop over a wide range of incubation temperatures, yet little is known of the effect that temperature has on hatchling morphology and composition. Australian Brush-turkey eggs collected on the day of laying were incubated in the laboratory under constant temperatures of 32, 34 and 36°C until hatching in order to determine the influence of temperature on hatchling mass, size and composition. The dry mass of the yolk-free body and residual yolk of hatchlings were temperature dependent, such that higher temperatures produced chicks of lesser yolk-free body mass and greater residual yolk mass than chicks incubated at lower temperatures. However the overall size (linear dimensions) and lipid, protein and ash content of chicks were independent of temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号