首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article, we propose a new joint modeling approach for the analysis of longitudinal data with informative observation times and a dependent terminal event. We specify a semiparametric mixed effects model for the longitudinal process, a proportional rate frailty model for the observation process, and a proportional hazards frailty model for the terminal event. The association among the three related processes is modeled via two latent variables. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the proposed estimators are established. The finite sample performance of the proposed estimators is examined through simulation studies, and an application to a medical cost study of chronic heart failure patients is illustrated.  相似文献   

2.
The cross-odds ratio is defined as the ratio of the conditional odds of the occurrence of one cause-specific event for one subject given the occurrence of the same or a different cause-specific event for another subject in the same cluster over the unconditional odds of occurrence of the cause-specific event. It is a measure of the association between the correlated cause-specific failure times within a cluster. The joint cumulative incidence function can be expressed as a function of the marginal cumulative incidence functions and the cross-odds ratio. Assuming that the marginal cumulative incidence functions follow a generalized semiparametric model, this paper studies the parametric regression modeling of the cross-odds ratio. A set of estimating equations are proposed for the unknown parameters and the asymptotic properties of the estimators are explored. Non-parametric estimation of the cross-odds ratio is also discussed. The proposed procedures are applied to the Danish twin data to model the associations between twins in their times to natural menopause and to investigate whether the association differs among monozygotic and dizygotic twins and how these associations have changed over time.  相似文献   

3.
Recurrent events data are commonly encountered in medical studies. In many applications, only the number of events during the follow‐up period rather than the recurrent event times is available. Two important challenges arise in such studies: (a) a substantial portion of subjects may not experience the event, and (b) we may not observe the event count for the entire study period due to informative dropout. To address the first challenge, we assume that underlying population consists of two subpopulations: a subpopulation nonsusceptible to the event of interest and a subpopulation susceptible to the event of interest. In the susceptible subpopulation, the event count is assumed to follow a Poisson distribution given the follow‐up time and the subject‐specific characteristics. We then introduce a frailty to account for informative dropout. The proposed semiparametric frailty models consist of three submodels: (a) a logistic regression model for the probability such that a subject belongs to the nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model with an unspecified baseline rate function; and (c) a Cox model for the informative dropout time. We develop likelihood‐based estimation and inference procedures. The maximum likelihood estimators are shown to be consistent. Additionally, the proposed estimators of the finite‐dimensional parameters are asymptotically normal and the covariance matrix attains the semiparametric efficiency bound. Simulation studies demonstrate that the proposed methodologies perform well in practical situations. We apply the proposed methods to a clinical trial on patients with myelodysplastic syndromes.  相似文献   

4.
Datta S  Satten GA 《Biometrics》2008,64(2):501-507
Summary .   We consider the problem of comparing two outcome measures when the pairs are clustered. Using the general principle of within-cluster resampling, we obtain a novel signed-rank test for clustered paired data. We show by a simple informative cluster size simulation model that only our test maintains the correct size under a null hypothesis of marginal symmetry compared to four other existing signed rank tests; further, our test has adequate power when cluster size is noninformative. In general, cluster size is informative if the distribution of pair-wise differences within a cluster depends on the cluster size. An application of our method to testing radiation toxicity trend is presented.  相似文献   

5.
We propose a new approach to fitting marginal models to clustered data when cluster size is informative. This approach uses a generalized estimating equation (GEE) that is weighted inversely with the cluster size. We show that our approach is asymptotically equivalent to within-cluster resampling (Hoffman, Sen, and Weinberg, 2001, Biometrika 73, 13-22), a computationally intensive approach in which replicate data sets containing a randomly selected observation from each cluster are analyzed, and the resulting estimates averaged. Using simulated data and an example involving dental health, we show the superior performance of our approach compared to unweighted GEE, the equivalence of our approach with WCR for large sample sizes, and the superior performance of our approach compared with WCR when sample sizes are small.  相似文献   

6.
Ghosh D  Lin DY 《Biometrics》2003,59(4):877-885
Dependent censoring occurs in longitudinal studies of recurrent events when the censoring time depends on the potentially unobserved recurrent event times. To perform regression analysis in this setting, we propose a semiparametric joint model that formulates the marginal distributions of the recurrent event process and dependent censoring time through scale-change models, while leaving the distributional form and dependence structure unspecified. We derive consistent and asymptotically normal estimators for the regression parameters. We also develop graphical and numerical methods for assessing the adequacy of the proposed model. The finite-sample behavior of the new inference procedures is evaluated through simulation studies. An application to recurrent hospitalization data taken from a study of intravenous drug users is provided.  相似文献   

7.
Summary .  Recurrent event data analyses are usually conducted under the assumption that the censoring time is independent of the recurrent event process. In many applications the censoring time can be informative about the underlying recurrent event process, especially in situations where a correlated failure event could potentially terminate the observation of recurrent events. In this article, we consider a semiparametric model of recurrent event data that allows correlations between censoring times and recurrent event process via frailty. This flexible framework incorporates both time-dependent and time-independent covariates in the formulation, while leaving the distributions of frailty and censoring times unspecified. We propose a novel semiparametric inference procedure that depends on neither the frailty nor the censoring time distribution. Large sample properties of the regression parameter estimates and the estimated baseline cumulative intensity functions are studied. Numerical studies demonstrate that the proposed methodology performs well for realistic sample sizes. An analysis of hospitalization data for patients in an AIDS cohort study is presented to illustrate the proposed method.  相似文献   

8.
Sequentially observed survival times are of interest in many studies but there are difficulties in analyzing such data using nonparametric or semiparametric methods. First, when the duration of followup is limited and the times for a given individual are not independent, induced dependent censoring arises for the second and subsequent survival times. Non-identifiability of the marginal survival distributions for second and later times is another issue, since they are observable only if preceding survival times for an individual are uncensored. In addition, in some studies a significant proportion of individuals may never have the first event. Fully parametric models can deal with these features, but robustness is a concern. We introduce a new approach to address these issues. We model the joint distribution of the successive survival times by using copula functions, and provide semiparametric estimation procedures in which copula parameters are estimated without parametric assumptions on the marginal distributions. This provides more robust estimates and checks on the fit of parametric models. The methodology is applied to a motivating example involving relapse and survival following colon cancer treatment.  相似文献   

9.
There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the “working correlation structure” is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two‐group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs—exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster.  相似文献   

10.
Naskar M  Das K 《Biometrics》2006,62(4):1004-1013
In medical studies, paired binary responses are often observed for each study subject over timepoints or clusters. A primary interest is to investigate how the bivariate association and marginal univariate risks are affected by repeated measurements on each subject. To achieve this we propose a very general class of semiparametric bivariate binary models. The subject-specific effects involved in the bivariate log odds ratio and the univariate logit components are assumed to follow a nonparametric Dirichlet process (DP). We propose a hybrid method to draw model-based inferences. In the framework of the proposed hybrid method, estimation of parameters is done by implementing the Monte Carlo expectation-maximization algorithm. The proposed methodology is illustrated through a study on the effectiveness of tibolone for reducing menopausal problems experienced by Indian women. A simulation study is also conducted to evaluate the efficiency of the new methodology.  相似文献   

11.
Clustered interval‐censored data commonly arise in many studies of biomedical research where the failure time of interest is subject to interval‐censoring and subjects are correlated for being in the same cluster. A new semiparametric frailty probit regression model is proposed to study covariate effects on the failure time by accounting for the intracluster dependence. Under the proposed normal frailty probit model, the marginal distribution of the failure time is a semiparametric probit model, the regression parameters can be interpreted as both the conditional covariate effects given frailty and the marginal covariate effects up to a multiplicative constant, and the intracluster association can be summarized by two nonparametric measures in simple and explicit form. A fully Bayesian estimation approach is developed based on the use of monotone splines for the unknown nondecreasing function and a data augmentation using normal latent variables. The proposed Gibbs sampler is straightforward to implement since all unknowns have standard form in their full conditional distributions. The proposed method performs very well in estimating the regression parameters as well as the intracluster association, and the method is robust to frailty distribution misspecifications as shown in our simulation studies. Two real‐life data sets are analyzed for illustration.  相似文献   

12.
Mixed case interval‐censored data arise when the event of interest is known only to occur within an interval induced by a sequence of random examination times. Such data are commonly encountered in disease research with longitudinal follow‐up. Furthermore, the medical treatment has progressed over the last decade with an increasing proportion of patients being cured for many types of diseases. Thus, interest has grown in cure models for survival data which hypothesize a certain proportion of subjects in the population are not expected to experience the events of interest. In this article, we consider a two‐component mixture cure model for regression analysis of mixed case interval‐censored data. The first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric transformation model that describes the distribution of event time for the uncured subjects. We propose semiparametric maximum likelihood estimation for the considered model. We develop an EM type algorithm for obtaining the semiparametric maximum likelihood estimators (SPMLE) of regression parameters and establish their consistency, efficiency, and asymptotic normality. Extensive simulation studies indicate that the SPMLE performs satisfactorily in a wide variety of settings. The proposed method is illustrated by the analysis of the hypobaric decompression sickness data from National Aeronautics and Space Administration.  相似文献   

13.
Recurrent events could be stopped by a terminal event, which commonly occurs in biomedical and clinical studies. In this situation, dependent censoring is encountered because of potential dependence between these two event processes, leading to invalid inference if analyzing recurrent events alone. The joint frailty model is one of the widely used approaches to jointly model these two processes by sharing the same frailty term. One important assumption is that recurrent and terminal event processes are conditionally independent given the subject‐level frailty; however, this could be violated when the dependency may also depend on time‐varying covariates across recurrences. Furthermore, marginal correlation between two event processes based on traditional frailty modeling has no closed form solution for estimation with vague interpretation. In order to fill these gaps, we propose a novel joint frailty‐copula approach to model recurrent events and a terminal event with relaxed assumptions. Metropolis–Hastings within the Gibbs Sampler algorithm is used for parameter estimation. Extensive simulation studies are conducted to evaluate the efficiency, robustness, and predictive performance of our proposal. The simulation results show that compared with the joint frailty model, the bias and mean squared error of the proposal is smaller when the conditional independence assumption is violated. Finally, we apply our method into a real example extracted from the MarketScan database to study the association between recurrent strokes and mortality.  相似文献   

14.
Cook RJ  Wei W  Yi GY 《Biometrics》2005,61(3):692-701
We derive semiparametric methods for estimating and testing treatment effects when censored recurrent event data are available over multiple periods. These methods are based on estimating functions motivated by a working "mixed-Poisson" assumption under which conditioning can eliminate subject-specific random effects. Robust pseudoscore test statistics are obtained via "sandwich" variance estimation. The relative efficiency of conditional versus marginal analyses is assessed analytically under a mixed time-homogeneous Poisson model. The robustness and empirical power of the semiparametric approach are assessed through simulation. Adaptations to handle recurrent events arising in crossover trials are described and these methods are applied to data from a two-period crossover trial of patients with bronchial asthma.  相似文献   

15.
This article discusses the statistical analysis of panel count data when the underlying recurrent event process and observation process may be correlated. For the recurrent event process, we propose a new class of semiparametric mean models that allows for the interaction between the observation history and covariates. For inference on the model parameters, a monotone spline‐based least squares estimation approach is developed, and the resulting estimators are consistent and asymptotically normal. In particular, our new approach does not rely on the model specification of the observation process. The proposed inference procedure performs well through simulation studies, and it is illustrated by the analysis of bladder tumor data.  相似文献   

16.
Yuan Y  Yin G 《Biometrics》2011,67(4):1543-1554
In the estimation of a dose-response curve, parametric models are straightforward and efficient but subject to model misspecifications; nonparametric methods are robust but less efficient. As a compromise, we propose a semiparametric approach that combines the advantages of parametric and nonparametric curve estimates. In a mixture form, our estimator takes a weighted average of the parametric and nonparametric curve estimates, in which a higher weight is assigned to the estimate with a better model fit. When the parametric model assumption holds, the semiparametric curve estimate converges to the parametric estimate and thus achieves high efficiency; when the parametric model is misspecified, the semiparametric estimate converges to the nonparametric estimate and remains consistent. We also consider an adaptive weighting scheme to allow the weight to vary according to the local fit of the models. We conduct extensive simulation studies to investigate the performance of the proposed methods and illustrate them with two real examples.  相似文献   

17.
Regression modeling of semicompeting risks data   总被引:1,自引:0,他引:1  
Peng L  Fine JP 《Biometrics》2007,63(1):96-108
Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event without covariates. In this article, we incorporate covariates and formulate their effects on the survival function of the intermediate event via a functional regression model. To accommodate informative censoring, a time-dependent copula model is proposed in the observable region of the data which is more flexible than standard parametric copula models for the dependence between the events. The model permits estimation of the marginal distribution under weaker assumptions than in previous work on competing risks data. New nonparametric estimators for the marginal and dependence models are derived from nonlinear estimating equations and are shown to be uniformly consistent and to converge weakly to Gaussian processes. Graphical model checking techniques are presented for the assumed models. Nonparametric tests are developed accordingly, as are inferences for parametric submodels for the time-varying covariate effects and copula parameters. A novel time-varying sensitivity analysis is developed using the estimation procedures. Simulations and an AIDS data analysis demonstrate the practical utility of the methodology.  相似文献   

18.
In surveillance studies of periodontal disease, the relationship between disease and other health and socioeconomic conditions is of key interest. To determine whether a patient has periodontal disease, multiple clinical measurements (eg, clinical attachment loss, alveolar bone loss, and tooth mobility) are taken at the tooth‐level. Researchers often create a composite outcome from these measurements or analyze each outcome separately. Moreover, patients have varying number of teeth, with those who are more prone to the disease having fewer teeth compared to those with good oral health. Such dependence between the outcome of interest and cluster size (number of teeth) is called informative cluster size and results obtained from fitting conventional marginal models can be biased. We propose a novel method to jointly analyze multiple correlated binary outcomes for clustered data with informative cluster size using the class of generalized estimating equations (GEE) with cluster‐specific weights. We compare our proposed multivariate outcome cluster‐weighted GEE results to those from the convectional GEE using the baseline data from Veterans Affairs Dental Longitudinal Study. In an extensive simulation study, we show that our proposed method yields estimates with minimal relative biases and excellent coverage probabilities.  相似文献   

19.
Summary In this article, we propose a positive stable shared frailty Cox model for clustered failure time data where the frailty distribution varies with cluster‐level covariates. The proposed model accounts for covariate‐dependent intracluster correlation and permits both conditional and marginal inferences. We obtain marginal inference directly from a marginal model, then use a stratified Cox‐type pseudo‐partial likelihood approach to estimate the regression coefficient for the frailty parameter. The proposed estimators are consistent and asymptotically normal and a consistent estimator of the covariance matrix is provided. Simulation studies show that the proposed estimation procedure is appropriate for practical use with a realistic number of clusters. Finally, we present an application of the proposed method to kidney transplantation data from the Scientific Registry of Transplant Recipients.  相似文献   

20.
He W  Lawless JF 《Biometrics》2003,59(4):837-848
This article presents methodology for multivariate proportional hazards (PH) regression models. The methods employ flexible piecewise constant or spline specifications for baseline hazard functions in either marginal or conditional PH models, along with assumptions about the association among lifetimes. Because the models are parametric, ordinary maximum likelihood can be applied; it is able to deal easily with such data features as interval censoring or sequentially observed lifetimes, unlike existing semiparametric methods. A bivariate Clayton model (1978, Biometrika 65, 141-151) is used to illustrate the approach taken. Because a parametric assumption about association is made, efficiency and robustness comparisons are made between estimation based on the bivariate Clayton model and "working independence" methods that specify only marginal distributions for each lifetime variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号