首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gastric cancer is one of the most common causes of cancer‐related death worldwide. Immunotherapy via programmed cell death protein 1 (PD‐1)/programmed cell death‐ligand 1 (PD‐L1) blockade has shown benefits for gastric cancer. Epigenetic DNA methylation critically regulates cancer immune checkpoints. We investigated how the natural compound oleanolic acid (OA) affected PD‐L1 expression in gastric cancer cells. Interleukin‐1β (IL‐1β) at 20 ng/mL was used to stimulate human gastric cancer MKN‐45 cells. IL‐1β significantly increased PD‐L1 expression, which was abolished by OA. Next, OA‐treated MKN‐45 cells were co‐cultured with activated and PD‐1‐overexpressing Jurkat T cells. OA restored IL‐2 levels in the co‐culture system and increased T cell killing toward MKN‐45 cells. Overexpression of PD‐L1 eliminated OA‐enhanced T cell killing capacity; however, PD‐1 blocking antibody abrogated the cytotoxicity of T cells. Moreover, OA abolished IL‐1β‐increased DNA demethylase activity in MKN‐45 cells. DNA methyltransferase inhibitor 5‐azacytidine rescued OA‐reduced PD‐L1 expression; whereas DNA demethylation inhibitor gemcitabine inhibited PD‐L1 expression, and, in combination with OA, provided more potent inhibitory effects. Furthermore, OA selectively reduced the expression of DNA demethylase TET3 in IL‐1β‐treated MKN‐45 cells, and overexpression of TET3 restored OA‐reduced PD‐L1 expression. Finally, OA disrupted nuclear factor κB (NF‐κB) signaling IL‐1β‐treated MKN‐45 cells, and overexpression of NF‐κB restored OA downregulation of TET3 and PD‐L1. The cytotoxicity of T cells toward MKN‐45 cells was also weakened by NF‐κB overexpression. Altogether, OA blocked the IL‐1β/NF‐κB/TET3 axis in gastric cancer cells, leading to DNA hypomethylation and downregulation of PD‐L1. Our discoveries suggested OA as an epigenetic modulator for immunotherapy or an adjuvant therapy against gastric cancer.  相似文献   

3.
Seomae mugwort, a Korean native variety of Artemisia argyi, exhibits physiological effects against various diseases. However, its effects on osteoarthritis (OA) are unclear. In this study, a Seomae mugwort extract prevented cartilage destruction in an OA mouse model. In vitro and ex vivo analyses revealed that the extract suppressed MMP3, MMP13, ADAMTS4 and ADAMTS5 expression induced by IL‐1β, IL‐6 and TNF‐α and inhibited the loss of extracellular sulphated proteoglycans. In vivo analysis revealed that oral administration of the extract suppressed DMM‐induced cartilage destruction. We identified jaceosidin in Seomae mugwort and showed that this compound decreased MMP3, MMP13, ADAMTS4 and ADAMTS5 expression levels, similar to the action of the Seomae mugwort extract in cultured chondrocytes. Interestingly, jaceosidin and eupatilin combined had similar effects to Seomae mugwort in the DMM‐induced OA model. Induction of IκB degradation by IL‐1β was blocked by the extract and jaceosidin, whereas JNK phosphorylation was only suppressed by the extract. These results suggest that the Seomae mugwort extract and jaceosidin can attenuate cartilage destruction by suppressing MMPs, ADAMTS4/5 and the nuclear factor‐κB signalling pathway by blocking IκB degradation. Thus, the findings support the potential application of Seomae mugwort, and particularly jaceosidin, as natural therapeutics for OA.  相似文献   

4.
Osteoarthritis (OA) is a common degenerative disease characterized by the progressive destruction both articular cartilage and the subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone loss are crucial for the prevention and treatment of OA. Oxymatrine (OMT) is a natural compound with anti‐inflammatory and antitumour properties. We found that OMT exhibited a strong inhibitory effect on LPS‐induced chondrocyte inflammation and catabolism. To further support our results, fresh human cartilage explants were treated with LPS to establish an ex vivo degradation model, and the results revealed that OMT inhibited the catabolic events of LPS‐stimulated human cartilage and substantially attenuated the degradation of articular cartilage ex vivo. As subchondral bone remodelling is involved in OA progression, and osteoclasts are a unique cell type in bone resorption, we investigated the effects of OMT on osteoclastogenesis, and the results demonstrated that OMT suppresses RANKL‐induced osteoclastogenesis by suppressing the RANKL‐induced NFATc1 and c‐fos signalling pathway in vitro. Further, we found that the anti‐inflammatory and anti‐osteoclastic effects of oxymatrine are mediated via the inhibition of the NF‐κB and MAPK pathways. In animal studies, OMT suppressed the ACLT‐induced cartilage degradation, and TUNEL assays further confirmed the protective effect of OMT on chondrocyte apoptosis. MicroCT analysis revealed that OMT had an attenuating effect on ACLT‐induced subchondral bone loss in vivo. Taken together, these results show that OMT interferes with the vicious cycle associated with OA and may be a potential therapeutic agent for abnormal subchondral bone loss and cartilage degradation in osteoarthritis.  相似文献   

5.
Nitric oxide (NO) and reactive oxygen species (ROS) have been shown to be linked with numerous diseases, including osteoarthritis (OA). Our study aimed to examine the effect of simvastatin on NO‐ or ROS‐induced cyclooxygenase‐2 (COX‐2) expression in OA. Simvastatin has attracted considerable attention since the discovery of its pharmacological effects on different pathogenic processes, including inflammation. Here, we report that simvastatin treatment blocked sodium nitroprusside (SNP)‐ and interleukin 1 beta (IL‐1β)‐induced COX‐2 production. In addition, simvastatin attenuated SNP‐induced NO production and IL‐1β‐induced ROS generation. Treatment with simvastatin prevented SNP‐ and IL‐1β‐induced nuclear factor kappa B (NF‐κB) activity. Inhibiting NO production and ROS generation using N‐acetylcysteine (NAC) and NG‐monomethyl‐ l ‐arginine ( l ‐NMMA), respectively, accelerated the influence of simvastatin on NF‐κB activity. In addition, NAC blocked SNP and simvastatin‐mediated COX‐2 production and NF‐κB activity but did not alter IL‐1β and simvastatin‐mediated COX‐2 expression. l ‐NMMA treatment also abolished IL‐1β‐mediated COX‐2 expression and NF‐κB activation, whereas SNP and simvastatin‐mediated COX‐2 expression were not altered compared with the levels in the SNP and simvastatin‐treated cells. Our findings suggested that simvastatin blocks COX‐2 expression by inhibiting SNP‐induced NO production and IL‐1β‐induced ROS generation by blocking the NF‐κB pathway.  相似文献   

6.
Sauchinone is one of the active lignan isolated from Saururus chinensis, which has been considered to possess various pharmacological activities, such as antitumor, hepatoprotective, antioxidant, and anti‐inflammatory effects. However, the functional roles of sauchinone in interleukin‐1 beta (IL‐1β)‐stimulated human osteoarthritis (OA) chondrocytes are still unknown. Thus, in this study, we investigated the anti‐inflammatory effects of sauchinone in IL‐1β‐stimulated chondrocytes. Our results demonstrated that sauchinone significantly attenuated NO and PGE2 production, as well as inhibited iNOS and COX‐2 expression in IL‐1β‐stimulated OA chondrocytes. In addition, sauchinone efficiently inhibited IL‐1β‐induced MMP‐3 and MMP‐13 release in human OA chondrocytes. Furthermore, sauchinone significantly attenuated the activation of NF‐κB in human OA chondrocytes. In conclusion, we showed for the first time that sauchinone inhibited inflammatory response in IL‐1β‐stimulated human chondrocytes probably through inhibiting the activation of NF‐κB signaling pathway. These data suggest that sauchinone may be a potential agent in the treatment of OA.  相似文献   

7.
Gypenoside (GP), the main active ingredient of Gynostemma pentaphyllum, possesses a variety of pharmacological capacities including anti‐inflammation, anti‐oxidation, and anti‐tumor. However, the effects of GP on IL‐1β‐stimulated human osteoarthritis (OA) chondrocytes are still unknown. Therefore, this study aimed to investigate the anti‐inflammatory effects of GP on IL‐1β‐stimulated human OA chondrocytes and explore the possible mechanism. Our results showed that GP dose‐dependently inhibited IL‐1β‐induced NO and PGE2 production in human OA chondrocytes. In addition, treatment of GP inhibited the expression of MMP3 and MMP13, which was increased by IL‐1β. Finally, we found that pretreatment of GP obviously suppressed NF‐κB activation in IL‐1β‐stimulated human OA chondrocytes. Taken together, the results demonstrated that GP has chondro‐protective effects, at least in part, through inhibiting the activation of NF‐κB signaling pathway in human OA chondrocytes. Thus, these findings suggest that GP may be considered as an alternative therapeutic agent for the management of OA patients.  相似文献   

8.
NR4A3 is a member of nuclear receptor subfamily 4, which is an important regulator of cellular function and inflammation. In this study, high expression of NR4A3 in human osteoarthritis (OA) cartilage was firstly observed. To explore the relationship between NR4A3 and OA, we used a lentivirus overexpression system to simulate its high expression and study its role in OA. Additionally, siRNA‐mediated knockdown of NR4A3 was used to confirm the findings of overexpression experiments. The results showed the stimulatory effect of IL‐1β on cartilage matrix‐degrading enzyme expression such as MMP‐3, 9, INOS and COX‐2 was enhanced in NR4A3‐overexpressed chondrocytes and decreased in NR4A3‐knockdown chondrocytes at both mRNA and protein levels, while IL‐1β‐induced chondrocyte‐specific gene (collagen 2 and SOX‐9) degradation was only regulated by NR4A3 at protein level. Furthermore, overexpression of NR4A3 would also enhance EBSS‐induced chondrocytes apoptosis, while knockdown of NR4A3 decreased apoptotic level after EBSS treatment. A pathway study indicated that IL‐1β‐induced NF‐κB activation was enhanced by NR4A3 overexpression and reduced by NR4A3 knockdown. We suggest that NR4A3 plays a pro‐inflammatory role in the development of OA, and we also speculate that NR4A3 mainly regulates cartilage matrix‐degrading gene expression under inflammatory conditions via the NF‐κB pathway.  相似文献   

9.
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degradation, in which elevated chondrocyte apoptosis and catabolic activity play an important role. MicroRNA‐155 (miR‐155) has recently been shown to regulate apoptosis and catabolic activity in some pathological circumstances, yet, whether and how miR‐155 is associated with OA pathology remain unexplored. We report here that miR‐155 level is significantly up‐regulated in human OA cartilage biopsies and also in primary chondrocytes stimulated by interleukin‐1β (IL‐1β), a pivotal pro‐catabolic factor promoting cartilage degradation. Moreover, miR‐155 inhibition attenuates and its overexpression promotes IL‐1β‐induced apoptosis and catabolic activity in chondrocytes in vitro. We also demonstrate that the PIK3R1 (p85α regulatory subunit of phosphoinositide 3‐kinase (PI3K)) is a target of miR‐155 in chondrocytes, and more importantly, PIK3R1 restoration abrogates miR‐155 effects on chondrocyte apoptosis and catabolic activity. Mechanistically, PIK3R1 positively regulates the transduction of PI3K/Akt pathway, and a specific Akt inhibitor reverses miR‐155 effects on promoting chondrocyte apoptosis and catabolic activity, phenocopying the results obtained via PIK3R1 knockdown, hence establishing that miR‐155 promotes chondrocyte apoptosis and catabolic activity through targeting PIK3R1‐mediated PI3K/Akt pathway activation. Altogether, our study discovers novel roles and mechanisms of miR‐155 in regulating chondrocyte apoptosis and catabolic activity, providing an implication for therapeutically intervening cartilage degradation and OA progression.  相似文献   

10.
Berberine, a plant alkaloid used in Chinese medicine, has broad cell‐protective functions in a variety of cell lines. Chondrocyte apoptosis contributes to the pathogenesis of cartilage degeneration in osteoarthritis (OA). However, little is known about the effect and underlying mechanism of berberine on OA chondrocytes. Here, we assessed the effects of berberine on cartilage degeneration in interleukin‐1β (IL‐1β)‐stimulated rat chondrocytes and in a rat model of OA. The results of an MTT assay and western blotting analysis showed that berberine attenuated the inhibitory effect of IL‐1β on the cell viability and proliferating cell nuclear antigen expression in rat chondrocytes. Furthermore, berberine activated Akt, which triggered p70S6K/S6 pathway and up‐regulated the levels of aggrecan and Col II expression in IL‐1β‐stimulated rat chondrocytes. In addition, berberine increased the level of proteoglycans in cartilage matrix and the thickness of articular cartilage, with the elevated levels of Col II, p‐Akt and p‐S6 expression in a rat OA model, as demonstrated by histopathological and immunohistochemistry techniques. The data thus strongly suggest that berberine may ameliorate cartilage degeneration from OA by promoting cell survival and matrix production of chondrocytes, which was partly attributed to the activation of Akt in IL‐1β‐stimulated articular chondrocytes and in a rat OA model. The resultant chondroprotective effects indicate that berberine merits consideration as a therapeutic agent in OA.  相似文献   

11.
12.
Osteoarthritis (OA) is a long‐term and inflammatory disorder featured by cartilage erosion. Here, we describe nomilin (NOM), a triterpenoid with inflammation modulatory properties in variety of disorders. In this study, we demonstrated the latent mechanism of NOM in alleviating the progress of OA both in vitro and in vivo studies. The results showed that NOM pre‐treatment suppressed the IL‐1β–induced over‐regulation of pro‐inflammation factors, such as NO, IL‐6, PGE2, iNOS, TNF‐α and COX‐2. Moreover, NOM also down‐regulates the degradation of ECM induced by IL‐1β. Mechanistically, the NOM suppressed NF‐κB signalling via disassociation of Keap1‐Nrf2 in chondrocytes. Furthermore, NOM delays the disease progression in the mouse OA model. To sum up, this research indicated NOM possessed a new potential therapeutic option in osteoarthritis.  相似文献   

13.
Deposition of amyloid is a common aging‐associated phenomenon in several aging‐related diseases. Osteoarthritis (OA) is the most prevalent joint disease, and aging is its major risk factor. Transthyretin (TTR) is an amyloidogenic protein that is deposited in aging and OA‐affected human cartilage and promotes inflammatory and catabolic responses in cultured chondrocytes. Here, we investigated the role of TTR in vivo using transgenic mice overexpressing wild‐type human TTR (hTTR‐TG). Although TTR protein was detected in cartilage in hTTR‐TG mice, the TTR transgene was highly overexpressed in liver, but not in chondrocytes. OA was surgically induced by destabilizing the medial meniscus (DMM) in hTTR‐TG mice, wild‐type mice of the same strain (WT), and mice lacking endogenous Ttr genes. In the DMM model, both cartilage and synovitis histological scores were significantly increased in hTTR‐TG mice. Further, spontaneous degradation and OA‐like changes in cartilage and synovium developed in 18‐month‐old hTTR mice. Expression of cartilage catabolic (Adamts4, Mmp13) and inflammatory genes (Nos2, Il6) was significantly elevated in cartilage from 6‐month‐old hTTR‐TG mice compared with WT mice as was the level of phospho‐NF‐κB p65. Intra‐articular injection of aggregated TTR in WT mice increased synovitis and significantly increased expression of inflammatory genes in synovium. These findings are the first to show that TTR deposition increases disease severity in the murine DMM and aging model of OA.  相似文献   

14.
15.
Interleukin (IL)‐1β plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. The production of IL‐1β is dependent upon caspase‐1‐containing multiprotein complexes called inflammasomes and IL‐1R1/MyD88/NF‐κB pathway. In this study, we explored whether a potential anti‐fibrotic agent fluorofenidone (FD) exerts its anti‐inflammatory and anti‐fibrotic effects through suppressing activation of NACHT, LRR and PYD domains‐containing protein 3 (NALP3) inflammasome and the IL‐1β/IL‐1R1/MyD88/NF‐κB pathway in vivo and in vitro. Male C57BL/6J mice were intratracheally injected with Bleomycin (BLM) or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with haemotoxylin and eosin and Masson's trichrome. Cytokines were measured by ELISA, and α‐smooth muscle actin (α‐SMA), fibronectin, collagen I, caspase‐1, IL‐1R1, MyD88 were measured by Western blot and/or RT‐PCR. The human actue monocytic leukaemia cell line (THP‐1) were incubated with monosodium urate (MSU), with or without FD pre‐treatment. The expression of caspase‐1, IL‐1β, NALP3, apoptosis‐associated speck‐like protein containing (ASC) and pro‐caspase‐1 were measured by Western blot, the reactive oxygen species (ROS) generation was detected using the Flow Cytometry, and the interaction of NALP3 inflammasome‐associated molecules were measured by Co‐immunoprecipitation. RLE‐6TN (rat lung epithelial‐T‐antigen negative) cells were incubated with IL‐1β, with or without FD pre‐treatment. The expression of nuclear protein p65 was measured by Western blot. Results showed that FD markedly reduced the expressions of IL‐1β, IL‐6, monocyte chemotactic protein‐1 (MCP‐1), myeloperoxidase (MPO), α‐SMA, fibronectin, collagen I, caspase‐1, IL‐1R1 and MyD88 in mice lung tissues. And FD inhibited MSU‐induced the accumulation of ROS, blocked the interaction of NALP3 inflammasome‐associated molecules, decreased the level of caspase‐1 and IL‐1β in THP‐1 cells. Besides, FD inhibited IL‐1β‐induced the expression of nuclear protein p65. This study demonstrated that FD, attenuates BLM‐induced pulmonary inflammation and fibrosis in mice via inhibiting the activation of NALP3 inflammasome and the IL‐1β/IL‐1R1/MyD88/ NF‐κB pathway.  相似文献   

16.
17.
18.
Rosmarinic acid (RosA) is a water‐soluble polyphenol, which can be isolated from many herbs such as orthosiphon diffuses and rosmarinus officinalis. Previous studies have shown that RosA possesses various biological properties. In this study, we investigate the anti‐osteoarthritic effects of RosA in rat articular chondrocytes. Chondrocytes were pre‐treated with RosA, followed by the stimulation of IL‐1β. Real‐time PCR and Western blot were performed to detect the expression of matrix metalloproteinase (MMP)‐1, MMP‐3 and MMP‐13. Nitric oxide and PGE2 production were measured by Griess reagent and enzyme‐linked immunosorbent assay (ELISA). The expression of mitogen‐activated protein kinase (MAPK) and nuclear factor‐κB (NF‐κB) was also investigated by Western blot analysis. We found that RosA down‐regulated the MMPs expression as well as nitric oxide and PGE2 production in IL‐1β‐induced chondrocytes. In addition, RosA inhibited p38 and JNK phosphorylation as well as p65 translocation. The results suggest that RosA may be considered a possible agent in the treatment of OA.  相似文献   

19.
Oxidative stress leads to increased risk for osteoarthritis (OA) but the precise mechanism remains unclear. We undertook this study to clarify the impact of oxidative stress on the progression of OA from the viewpoint of oxygen free radical induced genomic instability, including telomere instability and resulting replicative senescence and dysfunction in human chondrocytes. Human chondrocytes and articular cartilage explants were isolated from knee joints of patients undergoing arthroplastic knee surgery for OA. Oxidative damage and antioxidative capacity in OA cartilage were investigated in donor-matched pairs of intact and degenerated regions of tissue isolated from the same cartilage explants. The results were histologically confirmed by immunohistochemistry for nitrotyrosine, which is considered to be a maker of oxidative damage. Under treatment with reactive oxygen species (ROS; 0.1 μmol/l H2O2) or an antioxidative agent (ascorbic acid: 100.0 μmol/l), cellular replicative potential, telomere instability and production of glycosaminoglycan (GAG) were assessed in cultured chondrocytes. In tissue cultures of articular cartilage explants, the presence of oxidative damage, chondrocyte telomere length and loss of GAG to the medium were analyzed in the presence or absence of ROS or ascorbic acid. Lower antioxidative capacity and stronger staining of nitrotyrosine were observed in the degenerating regions of OA cartilages as compared with the intact regions from same explants. Immunostaining for nitrotyrosine correlated with the severity of histological changes to OA cartilage, suggesting a correlation between oxidative damage and articular cartilage degeneration. During continuous culture of chondrocytes, telomere length, replicative capacity and GAG production were decreased by treatment with ROS. In contrast, treatment with an antioxidative agent resulted in a tendency to elongate telomere length and replicative lifespan in cultured chondrocytes. In tissue cultures of cartilage explants, nitrotyrosine staining, chondrocyte telomere length and GAG remaining in the cartilage tissue were lower in ROS-treated cartilages than in control groups, whereas the antioxidative agent treated group exhibited a tendency to maintain the chondrocyte telomere length and proteoglycan remaining in the cartilage explants, suggesting that oxidative stress induces chondrocyte telomere instability and catabolic changes in cartilage matrix structure and composition. Our findings clearly show that the presence of oxidative stress induces telomere genomic instability, replicative senescence and dysfunction of chondrocytes in OA cartilage, suggesting that oxidative stress, leading to chondrocyte senescence and cartilage ageing, might be responsible for the development of OA. New efforts to prevent the development and progression of OA may include strategies and interventions aimed at reducing oxidative damage in articular cartilage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号