首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous studies reported the controversial effects that protein tyrosine kinase (PTK) inhibition could induce an up-regulation or down-regulation of Kir2.1 current. The present study investigates how the recombinant human Kir2.1 channels are regulated by PTKs using whole-cell patch voltage-clamp, immunoprecipitation and Western blot, and mutagenesis approaches. We found that hKir2.1 current was reversibly inhibited by the broad spectrum PTK inhibitor genistein and the highly selective EGFR (epidermal growth factor receptor) kinase inhibitor AG556 in a concentration-dependent manner. The inhibition of hKir2.1 channels by genistein or AG556 was countered by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of Kir2.1 channels was reduced by genistein or AG556, and the reduction was significantly antagonized by orthovanadate. The mutation of Y242 dramatically reduced the inhibitory response to AG556. The results obtained in this study demonstrate that hKir2.1 channels are down-regulated by PTK inhibition, suggesting that EGFR kinase participates in the modulation of human cardiac excitability.  相似文献   

2.
Zhang DY  Wang Y  Lau CP  Tse HF  Li GR 《Cellular signalling》2008,20(10):1815-1821
Human ether-à-go-go-related gene (hERG or Kv11.1) encodes the rapidly activated delayed rectifier K(+) current (I(Kr)) in the human heart. Potential regulation of hERG channel by protein tyrosine kinases (PTKs) is not understood. The present study was designed to investigate whether this channel is modulated by PTKs using whole-cell patch clamp technique, and immunoprecipitation and Western blot analysis in HEK 293 cells stably expressing hERG gene. We found that the broad-spectrum PTK inhibitor genistein (30 muM), the selective EGFR (epidermal growth factor receptor) kinase inhibitor AG556 (10 muM) and the Src-family kinase inhibitor PP2 (10 muM) remarkably inhibited hERG channel current (I(hERG)), and the effects were significantly countered by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (1 mM). Immunoprecipitation and Western blot analysis demonstrated that membrane protein tyrosine phosphorylation of hERG channels was reduced by genistein, AG556, and PP2. The reduction of hERG channel phosphorylation level by genistein, AG556 or PP2 was antagonized by orthovanadate. Single point mutation(s) of Y475A and/or Y611A dramatically attenuated the inhibitory effect of I(hERG) by PP2 and/or AG556. Our results demonstrate the novel information that I(hERG) is modulated not only by Src-family kinases, but also by EGFR kinases. Y475 and/or Y611 are likely the preferred phosphorylation sites. Regulation of hERG channels by PTKs modifies the channel activity and thus likely alters electrophysiological properties including action potential duration and cell excitability in human heart and neurons.  相似文献   

3.
Human ether á-go-go gene potassium channels (hEAG1 or Kv10.1) are expressed in brain and various human cancers and play a role in neuronal excitement and tumor progression. However, the functional regulation of hEAG channels by signal transduction is not fully understood. The present study was therefore designed to investigate whether hEAG1 channels are regulated by protein tyrosine kinases (PTKs) in HEK 293 cells stably expressing hEAG1 gene using whole-cell patch voltage-clamp, immunoprecipitation, Western blot, and mutagenesis approaches. We found that the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556 (10 μM), but not the platelet growth factor receptor (PDGFR) kinase inhibitor AG1295 (10 μM) or the Src-family inhibitor PP2 (10 μM), can inhibit hEAG1 current, and the inhibitory effect can be reversed by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hEAG1 channels was reduced by AG556, and the reduction was significantly countered by orthovanadate. The hEAG1 mutants Y90A, Y344A and Y485A, but not Y376A and Y479A, exhibited reduced response to AG556. Interestingly, the inhibition effect of AG556 was lost in triple mutant hEAG1 channels at Y90, Y344, and Y485 with alanine. These results demonstrate for the first time that hEAG1 channel activity is regulated by EGFR kinase at the tyrosine residues Tyr90, Try344, and Try485. This effect is likely involved in regulating neuronal activity and/or tumor growth.  相似文献   

4.
The aim of the present study was to investigate whether/how the recombinant human cardiac IKs could be regulated by epidermal growth factor receptor kinase in HEK 293 cells stably expressing hKCNQ1/hKCNE1 genes using the approaches of perforated patch clamp technique, immunoprecipitation and Western blot analysis. It was found that the broad spectrum isoflavone tyrosine kinase inhibitor genistein and the selective epidermal growth factor receptor kinase inhibitor tyrphostin AG556 suppressed the recombinant IKs, and their inhibition was countered by the protein tyrosine phosphatase inhibitor orthovanadate. The Src-family kinase inhibitor PP2 reduced the current, but the effect was not antagonized by orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hKCNQ1 protein was decreased by genistein or AG556, but not by PP2. These results provide the novel information that epidermal growth factor receptor kinase, but not Src-family kinases, regulates the recombinant cardiac IKs stably expressed in HEK 293 cells via phosphorylating KCNQ1 protein of the channel.  相似文献   

5.
6.
Tyrphostin AG1478 is known as a specific and reversible inhibitor of TK (tyrosine kinase) activity of the EGFR [EGF (epidermal growth factor) receptor]. It is attractive as an anticancer agent for cancers with elevated EGFR TK levels. However, post‐application effects of AG1478 are not well studied. We have analysed EGFR phosphorylation after termination of AG1478 application using human epidermoid carcinoma A431 cells. It was found that AG1478 inhibitory action is fast, but not fully reversible: removal of tyrphostin resulted in incomplete restoration of the overall EGFR phosphorylation. Analysing the state of two individual autophosphorylation sites of internalized EGFR, Tyr1045 and Tyr1173, we demonstrated that phosphorylation of Tyr1173 involved in stimulation of the MAPK (mitogen‐activated protein kinase) cascade was restored much more efficiently than that in position 1045, which binds the ubiquitin ligase c‐Cbl and is necessary for targeting the receptor for lysosomal degradation. c‐Cbl association with EGFR abolished by AG1478 was not reestablished after tyrphostin cessation. As a consequence, ubiquitination‐dependent EGFR delivery to lysosomes was blocked, while phosphorylation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) was even increased. Thus, after termination of AG1478, the intracellular level of the inhibitor can be reached at which mitogenic signalling will be restored, whereas the EGFR negative regulation due to lysosomal degradation will not.  相似文献   

7.
To determine whether protein tyrosine kinase (PTK) modulates volume-sensitive chloride current (I(Cl.vol)) in human atrial myocytes and to identify the PTKs involved, we studied the effects of broad-spectrum and selective PTK inhibitors and the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (VO(4)(-3)). I(Cl.vol) evoked by hyposmotic bath solution (0.6-times isosmotic, 0.6T) was enhanced by genistein, a broad-spectrum PTK inhibitor, in a concentration-dependent manner (EC(50) = 22.4 microM); 100 microM genistein stimulated I(Cl.vol) by 122.4 +/- 10.6%. The genistein-stimulated current was inhibited by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 150 microM) and tamoxifen (20 microM), blockers of I(Cl.vol). Moreover, the current augmented by genistein was volume dependent; it was abolished by hyperosmotic shrinkage in 1.4T, and genistein did not activate Cl(-) current in 1T. In contrast to the stimulatory effects of genistein, 100 microM tyrphostin A23 (AG 18) and A25 (AG 82) inhibited I(Cl.vol) by 38.2 +/- 4.9% and 40.9 +/- 3.4%, respectively. The inactive analogs, daidzein and tyrphostin A63 (AG 43), did not alter I(Cl.vol). In addition, the PTP inhibitor VO(4)(-3) (1 mM) reduced I(Cl.vol) by 53.5 +/- 4.5% (IC(50) = 249.6 microM). Pretreatment with VO(4)(-3) antagonized genistein-induced augmentation and A23- or A25-induced suppression of I(Cl.vol). Furthermore, the selective Src-family PTK inhibitor PP2 (5 microM) stimulated I(Cl.vol), mimicking genistein, whereas the selective EGFR (ErbB-1) kinase inhibitor tyrphostin B56 (AG 556, 25 microM) reduced I(Cl.vol), mimicking A23 and A25. The effects of both PP2 and B56 also were substantially antagonized by pretreatment with VO(4)(-3). The results suggest that I(Cl.vol) is regulated in part by the balance between PTK and PTP activity. Regulation is complex, however. Src and EGFR kinases, distinct soluble and receptor-mediated PTK families, have opposing effects on I(Cl.vol), and multiple target proteins are likely to be involved.  相似文献   

8.
The regulation of intracellular Ca2+ signalling by phosphorylation processes remains poorly defined, particularly with regards to tyrosine phosphorylation. Evidence from non-excitable cells implicates tyrosine phosphorylation in the activation of so-called store-operated Ca2+ channels (SOCCs), but their involvement in neuronal Ca2+ signalling is still elusive.In the present study, we determined the role of protein tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs) in the coupling between intracellular Ca2+ stores and SOCCs in neonatal rat hippocampal neurons by Fura-2 Ca2+ imaging. An early Ca2+ response from intracellular stores was triggered with thapsigargin, and followed by a secondary plasma membrane Ca2+ response. This phase was blocked by the non-specific Ca2+ channel blocker NiCl and the SOCC blocker, 2-aminoethoxydiphenyl borate (2-APB). Interestingly, two structurally distinct PTK inhibitors, genistein and AG126, also inhibited this secondary response.Application of the PTP inhibitor sodium orthovanadate (OV) also activated a sustained and tyrosine kinase dependent Ca2+ response, blocked by NiCl and 2-APB. In addition, OV resulted in a Ca2+ store dependent enhancement of NMDA responses, corresponding to, and occluding the signalling pathway for group I metabotropic glutamate receptors (mGluRs). This study provides first evidence for tyrosine based phospho-regulation of SOCCs and NMDA signalling in neurons.  相似文献   

9.
Store‐operated calcium entry (SOCE) is essential for many cellular processes. In this study, we investigated modulation of SOCE by tyrosine phosphorylation in rat epididymal basal cells. The intracellular Ca2+([Ca2+]i) measurement showed that SOCE occurred in rat epididymal basal cells by pretreating the cells with thapsigargin (Tg), the inhibitor of sarco‐endoplasmic reticulum Ca2+‐ATPase. To identify the role of Ca2+ channels in this response, we examined the effects of transient receptor potential canonical channel blockers 2‐aminoethoxydiphenyl borate (2‐APB), 1‐[β‐[3‐(4‐methoxyphenyl)pro‐poxy]‐4‐methoxyphenethyl]‐1H‐imidazole hydrochloride(SKF96365), Gd3+, and non‐selective cation channel blocker Ni2+ respectively on SOCE and found that these blockers could inhibit the Ca2+ influx to different extent. Furthermore, we studied the regulation of SOCE by tyrosine kinase pathway. The inhibitor of tyrosine kinase genistein remarkably suppressed the SOCE response, whereas sodium orthovanadate, the inhibitor of tyrosine phosphatase, greatly enhanced it. The results suggest that tyrosine kinase pathway plays a significant role in the initiation of SOCE and positively modulates SOCE in epididymal basal cells. J. Cell. Physiol. 226: 1069–1073, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Oxyhemoglobin (OxyHb) can suppress voltage-dependent K(+) channel (K(V)) currents through protein tyrosine kinase activation, which may contribute to cerebral vasospasm following subarachnoid hemorrhage. Here we have tested the hypothesis that shedding of heparin-binding EGF-like growth factor (HB-EGF) and the resulting activation of the tyrosine kinase EGF receptor (EGFR) underlie OxyHb-induced K(V) channel suppression in the cerebral vasculature. With the use of the conventional whole cell patch-clamp technique, two EGFR ligands, EGF and HB-EGF, were found to mimic OxyHb-induced K(V) suppression in rabbit cerebral artery myocytes. K(V) current suppression by OxyHb or EGF ligands was eliminated by a specific EGFR inhibitor, AG-1478, but was unaffected by PKC inhibition. Compounds (heparin and CRM-197) that specifically interfere with HB-EGF signaling eliminated OxyHb-induced K(V) suppression, suggesting that HB-EGF is the EGFR ligand involved in this pathway. HB-EGF exists as a precursor protein that, when cleaved by matrix metalloproteases (MMPs), causes EGFR activation. MMP activation was detected in OxyHb-treated arteries by gelatin zymography. Furthermore, the MMP inhibitor (GM-6001) abolished OxyHb-induced K(V) current suppression. We also observed K(V) current suppression due to EGFR activation in human cerebral artery myocytes. In conclusion, these data demonstrate that OxyHb induces MMP activation, causing HB-EGF shedding and enhanced EGFR activity, ultimately leading to K(V) channel suppression. We propose that EGFR-mediated K(V) suppression contributes to vascular pathologies, such as cerebral vasospasm, and may play a more widespread role in the regulation of regional blood flow and peripheral resistance.  相似文献   

11.
The cGMP sensitivity of cyclic nucleotide-gated (CNG) channels can be modulated by changes in phosphorylation catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases. Previously, we used genistein, a PTK inhibitor, to probe the interaction between PTKs and homomeric channels comprised of alpha subunits (RETalpha) of rod photoreceptor CNG channels expressed in Xenopus oocytes. We showed that in addition to inhibiting phosphorylation, genistein triggers a noncatalytic interaction between PTKs and homomeric RETalpha channels that allosterically inhibits channel gating. Here, we show that native CNG channels from rods, cones, and olfactory receptor neurons also exhibit noncatalytic inhibition induced by genistein, suggesting that in each of these sensory cells, CNG channels are part of a regulatory complex that contains PTKs. Native CNG channels are heteromers, containing beta as well as alpha subunits. To determine the contributions of alpha and beta subunits to genistein inhibition, we compared the effect of genistein on native, homomeric (RETalpha and OLFalpha), and heteromeric (RETalpha+beta, OLFalpha+beta, and OLFalpha+RETbeta) CNG channels. We found that genistein only inhibits channels that contain either the RETalpha or the OLFbeta subunits. This finding, along with other observations about the maximal effect of genistein and the Hill coefficient of genistein inhibition, suggests that the RETalpha and OLFbeta subunits contain binding sites for the PTK, whereas RETbeta and OLFalpha subunits do not.  相似文献   

12.
Large conductance, calcium-sensitive K(+) channels (BK(Ca) channels) contribute to the control of membrane potential in a variety of tissues, including smooth muscle, where they act as the target effector for intracellular "calcium sparks" and the endothelium-derived vasodilator nitric oxide. Various signal transduction pathways, including protein phosphorylation can regulate the activity of BK(Ca) channels, along with many other membrane ion channels. In our study, we have examined the regulation of BK(Ca) channels by the cellular Src gene product (cSrc), a soluble tyrosine kinase that has been implicated in the regulation of both voltage- and ligand-gated ion channels. Using a heterologous expression system, we observed that co-expression of murine BK(Ca) channel and the human cSrc tyrosine kinase in HEK 293 cells led to a calcium-sensitive enhancement of BK(Ca) channel activity in excised membrane patches. In contrast, co-expression with a catalytically inactive cSrc mutant produced no change in BK(Ca) channel activity, demonstrating the requirement for a functional cSrc molecule. Furthermore, we observed that BK(Ca) channels underwent direct tyrosine phosphorylation in cells co-transfected with BK(Ca) channels and active cSrc but not in cells co-transfected with the kinase inactive form of the enzyme. A single Tyr to Phe substitution in the C-terminal half of the channel largely prevented this observed phosphorylation. Given that cSrc may become activated by receptor tyrosine kinases or G-protein-coupled receptors, these findings suggest that cSrc-dependent tyrosine phosphorylation of BK(Ca) channels in situ may represent a novel regulatory mechanism for altering membrane potential and calcium entry.  相似文献   

13.
In the present study, we investigated the tyrosine phosphorylation of Bombyx mori prothoracic glands using phosphotyrosine‐specific antibodies and Western blot analysis. Results showed that prothoracicotropic hormone (PTTH) stimulates a rapid increase in tyrosine phosphorylation of at least 2 proteins in prothoracic glands, one of which was identified as extracellular signal‐regulated kinase (ERK). The phosphorylation of another 120‐kDa protein showed dose‐ and time‐dependent stimulation by PTTH in vitro. In vitro activation of tyrosine phosphorylation was also verified by in vivo experiments: injection of PTTH into day‐6 last‐instar larvae greatly increased tyrosine phosphorylation. Treatment of prothoracic glands with the protein tyrosine phosphatase inhibitor, sodium orthovanadate, also resulted in tyrosine phosphorylation of several proteins and increased ecdysteroidogenesis. The PTTH‐stimulated phosphorylation of the 120‐kDa protein was markedly attenuated by genistein, a broad‐spectrum tyrosine kinase inhibitor, but not by HNMPA‐(AM)3, a specific inhibitor of insulin receptor tyrosine kinase. PP2, a more‐selective inhibitor of the Src‐family tyrosine kinases, partially inhibited PTTH‐stimulated tyrosine phosphorylation, but not ecdysteroidogenesis. This result implies the possibility that in addition to ERK, the phosphorylation of the 120‐kDa protein, which is not Src‐family tyrosine kinase, is likely also involved in PTTH‐stimulated ecdysteroidogenesis in B. mori. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.  相似文献   

15.
In accordance with our recent results obtained with cultured rat hepatocytes [Fujioka, T. & Ui, M. (2001) Eur. J. Biochem. 268, 25-34], epidermal growth factor (EGF) gave rise to transient tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-2), thereby activating the bound phosphatidylinositol 3-kinase in human epidermoid carcinoma A431 cells normally abundant in EGF receptors (EGFR) and Chinese hamster ovary (CHO) cells transfected with full-length EGFR. These actions of EGF, although much smaller in magnitude than those of insulin or IGF-I in the same cells, were accompanied by tyrosine phosphorylation of EGFR rather than insulin or IGF-I receptors, never observed in wild-type CHO cells expressing no EGFR, and totally inhibited by an inhibitor of EGFR kinase, AG1478, that was without effect on insulin or IGF-I actions. Recombinant IRS-1 was phosphorylated on tyrosines upon incubation with purified EGFR from A431 cells and 32P-labeled ATP. When CHO cells were transfected with C-terminal truncated EGFR lacking three NPXY motifs responsible for direct binding to phosphotyrosine-binding domains of IRSs, no effect of EGF could be observed. We suggest that tyrosine phosphorylation of IRS-1 or IRS-2 could mediate EGFR-induced activation of phosphatidylinositol 3-kinase in mammalian cells.  相似文献   

16.
Large conductance calcium- and voltage-activated potassium (BK) channels assemble as macromolecular signaling complexes and are potently regulated by reversible protein phosphorylation. However, although numerous studies have revealed regulation of BK channels through changes in direct phosphorylation of the pore-forming alpha-subunits the functional role of changes in phosphorylation of defined adapter/signaling proteins within the complex on channel function are essentially not known. Here, we demonstrate that mammalian BK channels are potently regulated by endogenous protein-tyrosine kinase and protein-tyrosine phosphatase activity closely associated with the channel. BK channel regulation was not dependent upon direct phosphorylation of the BK alpha-subunit, rather channel function was controlled by the tyrosine phosphorylation status of the adapter protein cortactin that assembles directly with the BK channel. Our data thus reveal a novel mode for BK channel regulation by reversible tyrosine phosphorylation and strongly support the hypothesis that phosphorylation-dependent regulation of accessory proteins within the BK channel signaling complex represents an important target for control of BK channel function.  相似文献   

17.
Alcohol (ethanol) at concentrations reached in blood following moderate to heavy drinking (30–80 mM) reduces cerebral artery diameter via inhibition of voltage- and calcium-gated potassium channels of large conductance (BK) in cerebral artery smooth muscle. These channels consist of channel-forming α and regulatory β1 subunits. A high-cholesterol diet protects against ethanol-induced constriction via accumulation of cholesterol within the vasculature. The molecular mechanisms of this protection remain unknown. In the present work, we demonstrate that in vitro cholesterol enrichment of rat middle cerebral arteries significantly increased cholesterol within arterial tissues and blunted constriction by 50 mM of ethanol. Ethanol-induced BK channel inhibition in inside-out patches excised from freshly isolated cerebral artery myocytes was also abolished by cholesterol enrichment. Enrichment of arteries with enantiomeric cholesterol (ent-cholesterol) also blunted BK channel inhibition and cerebral artery constriction in response to ethanol. The similar protection of cholesterol and ent-cholesterol against ethanol action indicates that this protection does not require protein site(s) that specifically sense natural cholesterol. Cholesterol-driven protection against ethanol-induced BK channel inhibition and vasoconstriction was replicated in myocytes and middle cerebral arteries of C57BL/6 mice. BK β1 subunits are known to regulate vascular diameter and its modification by ethanol. However, blunting of an ethanol effect by in vitro cholesterol enrichment was observed in arteries and myocyte membrane patches from BK β1 (KCNMB1) knockout mice. Thus, BK β1 subunits are not needed for cholesterol protection against ethanol effect on BK channel function and cerebral artery diameter.  相似文献   

18.
In ovine basilar arterial smooth muscle cells (SMCs), the fetal "big" Ca2+-activated K+ (BK) channel activity is significantly greater and has a lower Ca2+ setpoint than BK channels from adult cells. In the present study, we tested the hypothesis that these differences result from developmentally regulated phosphorylation of these channels. Using the patch-clamp technique and a novel in situ enzymological approach, we measured the rates and extents of changes in BK channel voltage activation from SMC inside-out patch preparations in response to selective activation and inhibition of channel-associated protein phosphatases and kinases (CAPAKs). We show that BK channel activity is modulated during development by differential phosphorylation and that the activities of CAPAKs change substantially during development. In particular, excised membrane patches from adult SMCs exhibited greater protein kinase A activity than those from a fetus. In contrast, fetal SMCs exhibited greater protein kinase G activity and phosphatase activity than adult SMCs. These findings extend our previous observation that the BK channel Ca2+ setpoint differs significantly in adult and fetal cerebrovascular myocytes and suggest a biochemical mechanism for this difference. In addition, these findings suggest that the functional stoichiometry of CAPAKs varies significantly during development and that such variation may be a hitherto unrecognized mechanism of ion channel regulation.  相似文献   

19.
To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possible through regulation of microtubule dynamics in plant cells.  相似文献   

20.
Compound 5 (Cpd 5), a synthetic K vitamin analogue, or 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone, is a potent inhibitor of epidermal growth factor (EGF)-induced rat hepatocyte DNA synthesis and induces EGF receptor (EGFR) tyrosine phosphorylation. To understand the cellular responses to Cpd 5, its effects on the EGF signal transduction pathway were examined and compared to those of the stimulant, EGF. Cpd 5 induced a cellular response program that included the induction of EGFR tyrosine phosphorylation and the activation of the mitogen-activated protein kinase (MAPK) cascade. EGFR tyrosine phosphorylation was induced by Cpd 5 in a time- and dose-dependent manner. Coimmunoprecipitation studies demonstrated that both EGF and Cpd 5 induced tyrosine phosphorylation of EGFR was associated with increased amounts of adapter proteins Shc and Grb2, and the Ras GTP-GDP exchange protein Sos, indicating the formation of functional EGFR complexes. Although EGFR phosphorylation was induced both by the stimulant EGF and the inhibitor Cpd 5, the timing and intensity of activation by EGF and Cpd 5 were different. EGF activated EGFR transiently, whereas Cpd 5 induced an intense and sustained activation. Cpd 5-altered cells had a decreased ability to dephosphorylate tyrosine phosphorylated EGFR, providing evidence for an inhibition of tyrosine phosphatase activity. Both EGF and Cpd 5 caused an induction of phospho-extracellular response kinase (ERK), which was also more sustained with Cpd 5. Moreover, whereas Cpd 5 induced a striking translocation of phosphorylated ERK from cytosol to the nucleus, no significant nuclear translocation occurred after stimulation with EGF. The data suggest that this novel compound causes growth inhibition through antagonism of EGFR phosphatases and consequent induction of EGFR and ERK phosphorylation. This is supported by experiments with PD 153035 and PD 098059, antagonists of phosphorylation of EGFR and MAP kinase kinase (MEK), respectively, which both antagonized Cpd 5-induced phosphorylation and the inhibition of DNA synthesis. These results imply a mechanism of cell growth inhibition associated with intense and prolonged protein tyrosine phosphorylation. Protein tyrosine phosphatases may thus be a novel target for drugs designed to inhibit cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号