首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The substrate binding site of pig mitochondrial malate dehydrogenase was characterized using complexes of the enzyme with the substrate analogue 8-hydroxypyrene-1,3,6-trisulfonate with and without the addition of coenzymes. The rotational mobility of the fluorescent dye within the binding site was examined with the aid of a multi-frequency phase-fluorimeter. Together with absorption, circular dichroism and fluorescence spectroscopy, conformational changes of the substrate binding site could be defined. The dye was generally found to be immobilized in the binding site. Addition of NADH to the binary complex caused strengthening of a hydrogen bond and further loss of mobility, whereas NAD enlarged the space available for motion of the dye with concomitant loss of the hydrogen bridge.  相似文献   

2.
Circular dichroism spectra and circular dichroism difference spectra, generated when porcine heart mitochondrial and supernatant malate dehydrogenase bind coenzymes or when enzyme dihydroincotinamide nucleotide binary complexes bind substrate analogs, are presented. No significant changes are observed in protein chromophores in the 200- to 240-nm spectral range indicating that there is apparently little or no perturbation of the alpha helix or peptide backbone when binary or ternary complexes are formed. Quite different spectral perturbances occur in the two enzymes with reduced coenzyme binding as well as with substrate-analog binding by enzyme-reduced coenzyme binding. Comparison of spectral perturbations in both enzymes with oxidized or reduced coenzyme binding suggests that the dihydronicotinamide moiety of the coenzyme interacts with or perturbs indirectly the environment of aromatic amino acid residues. Reduced coenzyme binding apparently perturbs tyrosine residues in both mitochondrial malate dehydrogenase and lactic dehydrogenase. Reduced coenzyme binding perturbs tyrosine and tryptophan residues in supernatant malate dehydrogenase. The number of reduced coenzyme binding sites was determined to be two per 70,000 daltons in the mitochondrial enzyme, and the reduced coenzyme dissociation constants, determined through the change in ellipticity at 260 nm, with dihydronicotinamide adenine dinucleotide binding, were found to be good agreement with published values (Holbrook, J. J., and Wolfe, R. G. (1972) Biochemistry 11, 2499-2502) obtained through fluorescence-binding studies and indicate no apparent extra coenzyme binding sites. When D-malate forms a ternary complex with malate dehydrogenase-reduced coenzyme complexes, perturbation of both adenine and dihydronicotinamide chromophores is evident. L-Malate binding, however, apparently produces only a perturbation of the adenine chromophore in such complexes. Since the coenzyme has been found to bind in an open conformation on the surface of the enzyme and the substrate analogs bind at or very near the dihydronicotinamide moiety binding site, protein conformational changes are implicated during ternary complex formation with D-malate which can effect the adenine chromophore at some distance from the substrate binding site.  相似文献   

3.
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The enzyme comprises three components; dI binds NAD(H), dIII binds NADP(H), and dII spans the membrane. The 1,4,5,6-tetrahydro analogue of NADH (designated H2NADH) bound to isolated dI from Rhodospirillum rubrum transhydrogenase with similar affinity to the physiological nucleotide. Binding of either NADH or H2NADH led to closure of the dI mobile loop. The 1,4,5,6-tetrahydro analogue of NADPH (H2NADPH) bound very tightly to isolated R. rubrum dIII, but the rate constant for dissociation was greater than that for NADPH. The replacement of NADP+ on dIII either with H2NADPH or with NADPH caused a similar set of chemical shift alterations, signifying an equivalent conformational change. Despite similar binding properties to the natural nucleotides, neither H2NADH nor H2NADPH could serve as a hydride donor in transhydrogenation reactions. Mixtures of dI and dIII form dI2dIII1 complexes. The nucleotide charge distribution of complexes loaded either with H2NADH and NADP+ or with NAD+ and H2NADPH should more closely mimic the ground states for forward and reverse hydride transfer, respectively, than previously studied dead-end species. Crystal structures of such complexes at 2.6 and 2.3 A resolution are described. A transition state for hydride transfer between dihydronicotinamide and nicotinamide derivatives determined in ab initio quantum mechanical calculations resembles the organization of nucleotides in the transhydrogenase active site in the crystal structure. Molecular dynamics simulations of the enzyme indicate that the (dihydro)nicotinamide rings remain close to a ground state for hydride transfer throughout a 1.4 ns trajectory.  相似文献   

4.
Jackson JB 《FEBS letters》2003,545(1):18-24
Transhydrogenase, in animal mitochondria and bacteria, couples hydride transfer between NADH and NADP(+) to proton translocation across a membrane. Within the protein, the redox reaction occurs at some distance from the proton translocation pathway and coupling is achieved through conformational changes. In an 'open' conformation of transhydrogenase, in which substrate nucleotides bind and product nucleotides dissociate, the dihydronicotinamide and nicotinamide rings are held apart to block hydride transfer; in an 'occluded' conformation, they are moved into apposition to permit the redox chemistry. In the two monomers of transhydrogenase, there is a reciprocating, out-of-phase alternation of these conformations during turnover.  相似文献   

5.
A Gafni 《Biochemistry》1978,17(7):1301-1304
The CD (circular dichroism) and CPL (circular polarization of luminescence) spectra of NADPH in aqueous solution were studied and found to be markedly different. The spectra were not affected by cleavage of the coenzyme molecule with phosphodiesterase. The differences are thus not due to the existence of extended and folded conformations of NADPH and it is concluded that they originate in excited state conformational changes of the nicotinamide--ribose fragment. Opposite signs of both the CD and CPL spectra were observed for NADH bound to horse liver alcohol dehydrogenase and to beef heart lactate dehydrogenase indicating structural differences between the nicotinamide binding sites. The binding of substrate analogues to enzyme--coenzyme complexes did not affect the CD spectra and hence no significant conformational changes are induced upon formation of the ternary complexes. No changes in the CPL spectrum of NADH bound to lactate dehydrogenase were observed upon adding oxalate to form the ternary complex. Marked differences were found between the CPL spectra of binary and ternary complexes with liver alcohol dehydrogenase, while the CD spectra of these complexes were identical. It is concluded that a conformational change of the excited NADH molecule occurs in the binary but not in the ternary complex involving LADH, thus indicating an increased rigidity of the latter complex.  相似文献   

6.
Transhydrogenase couples proton translocation across a membrane to hydride transfer between NADH and NADP+. Previous x-ray structures of complexes of the nucleotide-binding components of transhydrogenase ("dI2dIII1" complexes) indicate that the dihydronicotinamide ring of NADH can move from a distal position relative to the nicotinamide ring of NADP+ to a proximal position. The movement might be responsible for gating hydride transfer during proton translocation. We have mutated three invariant amino acids, Arg-127, Asp-135, and Ser-138, in the NAD(H)-binding site of Rhodospirillum rubrum transhydrogenase. In each mutant, turnover by the intact enzyme is strongly inhibited. Stopped-flow experiments using dI2dIII1 complexes show that inhibition results from a block in the steps associated with hydride transfer. Mutation of Asp-135 and Ser-138 had no effect on the binding affinity of either NAD+ or NADH, but mutation of Arg-127 led to much weaker binding of NADH and slightly weaker binding of NAD+. X-ray structures of dI2dIII1 complexes carrying the mutations showed that their effects were restricted to the locality of the bound NAD(H). The results are consistent with the suggestion that in wild-type protein movement of the Arg-127 side chain, and its hydrogen bonding to Asp-135 and Ser-138, stabilizes the dihydronicotinamide of NADH in the proximal position for hydride transfer.  相似文献   

7.
The extent of fluorescence quenching and that of phosphorescence quenching of Trp-15 and Trp-314 in alcohol dehydrogenase from horse liver as well as the intrinsic phosphorescence lifetime of Trp-314 in fluid solution have been utilized as structural probes of the macromolecule in binary and ternary complexes formed with coenzyme, analogous, and various substrate/inhibitors. Luminescence quenching by the coenzyme reveals that (1) while the reduced form quenches Trp emission exclusively from the fluorescent state, the oxidized form is very effective on the phosphorescent state as well and that (2) among the series of NADH binary and ternary complexes known by crystallographic studies to attain the closed form, distinct nicotinamide/indole geometrical arrangements are inferred from a variable degree of fluorescence quenching. Information of the dynamic structure of the coenzyme-binding domain derived from the phosphorescence lifetime of Trp-314 points out that within the series of closed NADH complexes there is considerable conformational heterogeneity. In solution, the variability in dynamical structure among the various protein complexes emphasizes that the closed/open forms identified by crystallographic studies are not two well-defined macrostates of the enzyme.  相似文献   

8.
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.  相似文献   

9.
The 2-position substituent on substrates or substrate analogues for glutamate dehydrogenase is shown to be intimately involved in the induction of conformational changes between subunits in the hexamer by coenzyme. These conformational changes are associated with the negative co-operativity exhibited by this enzyme. 2-Oxoglutarate and L-2-hydroxyglutarate induce indications of co-operativity similar to those induced by the substrate of oxidative deamination, glutamate, in kinetic studies. Glutarate (2-position CH2) does not. A comparison of the effects of L-2-hydroxyglutarate and D-2-hydroxyglutarate or D-glutamate indicates that the 2-position substituent must be in the L-configuration for these conformational changes to be triggered. In addition, glutarate and L-glutamate in ternary enzyme-NAD(P)H-substrate complexes induce very different coenzyme fluorescence properties, showing that glutamate induces a different conformation of the enzyme-coenzyme complex from that induced by glutarate. Although glutamate and glutarate both tighten the binding of reduced coenzyme to the active site, the effect is much greater with glutamate, and the binding is described by two dissociation constants when glutamate is present. The data suggest that the two carboxy groups on the substrate are required to allow synergistic binding of coenzyme and substrate to the active site, but that interactions between the 2-position on the substrate and the enzyme trigger the conformational changes that result in subunit-subunit interactions and in the catalytic co-operativity exhibited by this enzyme.  相似文献   

10.
Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 Å resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains (α, β, and γ). The class I active site is within the C-terminal α domain, and the class II active site is between the N-terminal γ and β domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg2+ complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This “loop-in” conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the “loop-out” conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.  相似文献   

11.
Deoxyhypusine is a modified lysine residue. It is formed posttranslationally in the precursor of eukaryotic initiation factor 5A (eIF5A) by deoxyhypusine synthase, employing spermidine as a butylamine donor. In the initial step of this reaction, deoxyhypusine synthase catalyzes the production of NADH through dehydrogenation of spermidine. Fluorescence measurements of this reaction revealed a -22-nm blue shift in the emission peak of NADH and a approximately 15-fold increase in peak intensity, characteristics of tightly bound NADH that were not seen by simply mixing NADH and enzyme. The fluorescent properties of the bound NADH can be ascribed to a hydrophobic environment and a rigidly held, open conformation of NADH, features in accord with the known crystal structure of the enzyme. Considerable fluorescence resonance energy transfer from tryptophan 327 in the active site to the dihydronicotinamide ring of NADH was seen. Upon addition of the eIF5A precursor, utilization of the enzyme-bound NADH for reduction of the eIF5A-imine intermediate to deoxyhypusine was reflected by a rapid decrease in the NADH fluorescence, indicating a transient hydride transfer mechanism as an integral part of the reaction. The number of NADH molecules bound approached four/enzyme tetramer; not all of the bound NADH was available for reduction of the eIF5A-imine intermediate.  相似文献   

12.
Transhydrogenase couples the reduction of NADP+ by NADH to inward proton translocation across mitochondrial and bacterial membranes. The coupling reactions occur within the protein by long distance conformational changes. In intact transhydrogenase and in complexes formed from the isolated, nucleotide-binding components, thio-NADP(H) is a good analogue for NADP(H), but thio-NAD(H) is a poor analogue for NAD(H). Crystal structures of the nucleotide-binding components show that the twists of the 3-carbothiamide groups of thio-NADP+ and of thio-NAD+ (relative to the planes of the pyridine rings), which are defined by the dihedral, Xam, are altered relative to the twists of the 3-carboxamide groups of the physiological nucleotides. The finding that thio-NADP+ is a good substrate despite an increased Xam value shows that approach of the NADH prior to hydride transfer is not obstructed by the S atom in the analogue. That thio-NAD(H) is a poor substrate appears to be the result of failure in the conformational change that establishes the ground state for hydride transfer. This might be a consequence of restricted rotation of the 3-carbothiamide group during the conformational change.  相似文献   

13.
Three crystal structures have been determined of active site specific substituted Cd(II) horse liver alcohol dehydrogenase and its complexes. Intensities were collected for the free, orthorhombic enzyme to 2.4-A resolution and for a triclinic binary complex with NADH to 2.7-A resolution. A ternary complex was crystallized from an equilibrium mixture of NAD+ and p-bromobenzyl alcohol. The microspectrophotometric analysis of these single crystals showed the protein-bound coenzyme to be largely NADH, which proves the complex to consist of CdII-LADH, NADH, and p-bromobenzyl alcohol. Intensity data for this abortive ternary complex were collected to 2.9-A resolution. The coordination geometry in the free Cd(II)-substituted enzyme is highly similar to that of the native enzyme. Cd(II) is bound to Cys-46, Cys-174, His-67, and a water molecule in a distorted tetrahedral geometry. Binding of coenzymes induces a conformational change similar to that in the native enzyme. The interactions between the coenzyme and the protein in the binary and ternary complexes are highly similar to those in the native ternary complexes. The substrate binds directly to the cadmium ion in a distorted tetrahedral geometry. No large, significant structural changes compared to the native ternary complex with coenzyme and p-bromobenzyl alcohol were found. The implications of these results for the use of active site specific Cd(II)-substituted horse liver alcohol dehydrogenase as a model system for the native enzyme are discussed.  相似文献   

14.
The increasing prevalence of tuberculosis in many areas of the world, associated with the rise in drug-resistant Mycobacterium tuberculosis (MTB) strains, presents a major threat to global health. InhA, the enoyl-ACP reductase from MTB, catalyzes the nicotinamide adenine dinucleotide (NADH)-dependent reduction of long-chain trans-2-enoyl-ACP fatty acids, an intermediate in mycolic acid biosynthesis. Mutations in the structural gene for InhA are associated with isoniazid resistance in vivo due to a reduced affinity for NADH, suggesting that the mechanism of drug resistance may be related to specific interactions between enzyme and cofactor within the NADH binding site. To compare the molecular events underlying ligand affinity in the wild-type, I21V, and I16T mutant enzymes and to identify the molecular aspects related to resistance, molecular dynamics simulations of fully solvated NADH-InhA (wild-type and mutants) were performed. Although very flexible, in the wild-type InhA-NADH complex, the NADH molecule keeps its extended conformation firmly bound to the enzyme's binding site. In the mutant complexes, the NADH pyrophosphate moiety undergoes considerable conformational changes, reducing its interactions with its binding site and probably indicating the initial phase of ligand expulsion from the cavity. This study should contribute to our understanding of specific molecular mechanisms of drug resistance, which is central to the design of more potent antimycobacterial agents for controlling tuberculosis.  相似文献   

15.
As shown by X-ray crystallography, horse liver alcohol dehydrogenase undergoes a global conformational change upon binding of NAD+ or NADH, involving a rotation of the catalytic domain relative to the coenzyme binding domain and the closing up of the active site to produce a catalytically efficient enzyme. The conformational change requires a complete coenzyme and is affected by various chemical or mutational substitutions that can increase the catalytic turnover by altering the kinetics of the isomerization and rate of dissociation of coenzymes. The binding of NAD+ is kinetically limited by a unimolecular isomerization (corresponding to the conformational change) that is controlled by deprotonation of the catalytic zinc-water to produce a negatively-charged zinc-hydroxide, which can attract the positively-charged nicotinamide ring. The deprotonation is facilitated by His-51 acting through a hydrogen-bonded network to relay the proton to solvent. Binding of NADH also involves a conformational change, but the rate is very fast. After the enzyme binds NAD+ and closes up, the substrate displaces the hydroxide bound to the catalytic zinc; this exchange may involve a double displacement reaction where the carboxylate group of a glutamate residue first displaces the hydroxide (inverting the tetrahedral coordination of the zinc), and then the exogenous ligand displaces the glutamate. The resulting enzyme-NAD+-alcoholate complex is poised for hydrogen transfer, and small conformational fluctuations may bring the reactants together so that the hydride ion is transferred by quantum mechanical tunneling. In the process, the nicotinamide ring may become puckered, as seen in structures of complexes of the enzyme with NADH. The conformational changes of alcohol dehydrogenase demonstrate the importance of protein dynamics in catalysis.  相似文献   

16.
Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymase complexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitory mechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes.  相似文献   

17.
The conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13 isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme (the 1ADD structure was used) within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of the ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1-deazaadenosine (1ADD) known from the X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of the bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

18.
Ribbons et al. (Ribbons, D.W., Ohta, Y., and Higgins, I.J. (1972) in Molecular Basis of Electron Transport, Miami Winter Symposic Series (Schultz, J., and Cameron, B.F., eds) Vol. 4, pp. 251-274, Academic Press, New York) presented a preliminary report that the flavoenzyme monooxygenase orcinol hydroxylase shows mixed type 4R, 4S stereospecificity with respect to dihydronicotinamide oxidation when resorcinol and m-cresol were used as substrate analogs. With the natural substrate orcinol, 4R chirality was maintained. In kinetic isotope experiments reported here, we demonstrate in fact that orcinol hydroxylase maintains 4R stereospecificity with respect to dihydronicotinamide oxidation with all three substrates, orcinol, resorcinol, and m-cresol. Deuterium and tritium kinetic isotope effects were detected under Vmax conditions with (4R)-[4-2H]-, and (4R)-[4-3H]NADH for all three substrates. No isotope effect was observed with (4S)-[4-2H]NADH and tritium labilization from assays with (4S)-[4-3H]-NADH was negligible in all cases.  相似文献   

19.
Dihydrofolate reductase (DHFR) has several flexible active site loops that facilitate ligand binding and catalysis. Previous studies of backbone dynamics in several complexes of DHFR indicate that the time scale and amplitude of motion depend on the conformation of the active site loops. In this study, information on dynamics is extended to methyl-containing side chains. To understand the role of side chain dynamics in ligand binding and loop conformation, methyl deuterium relaxation rates of Escherichia coli DHFR in binary folate and ternary folate:NADP+ complexes have been measured, together with chi(1) rotamer populations for threonine, isoleucine, and valine residues, determined from measurements of 3J(CgammaCO) and 3J(CgammaN) coupling constants. The results indicate that, in addition to backbone motional restriction in the adenosine-binding site, side chain flexibility in the active site and the surrounding active site loops is diminished upon binding NADP+. Resonances for several methyls in the active site and the surrounding active site loops were severely broadened in the folate:NADP+ ternary complex, suggesting the presence of motion on the chemical shift time scale. The side chains of Ile14 and Ile94, which pack against the nicotinamide and pterin rings of the cofactor and substrate, respectively, exhibit rotamer disorder in the ternary folate:NADP+ complex. Conformational fluctuations of these side chains may play a role in transition state stabilization; the observed line broadening for Ile14 suggests motions on a microsecond/millisecond time scale.  相似文献   

20.
Conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13-isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme [the structure of ADA complex with 1-deazaadenosine (1ADD) was used] within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1ADD known from X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号