首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Candida albicans is an important opportunistic pathogen in humans. During infection, arachidonic acid (ω6) is released from host phospholipids, leading to the production of host and yeast derived prostaglandin E(2) (PGE(2)). This stimulates yeast hyphal formation, is immunomodulatory and causes cell damage during infection. Although supplementation of mammalian cells with ω3 fatty acids has received attention due to their immunomodulatory and anti-inflammatory activities, increased production of ω3 fatty acid metabolites could lower the host's ability to combat infections. Since mammalian cells cannot produce PGE(2) from sciadonic acid (SA), a non-methylene interrupted ω6 fatty acid (NMIFA), supplementation of cells with SA may decrease the production of PGE(2) without increasing levels of ω3 fatty acid metabolites. Our study evaluated PGE(2) production by SA supplemented epithelial cells in response to Candida albicans and C. dubliniensis. We show that PGE(2) production during infection can be modulated by incorporation of SA into host lipids and that this does not influence the levels of ω3 fatty acids in the epithelial cells.  相似文献   

2.
Supplementation of growing MDCK canine kidney tubular epithelial cultures with linoleic acid produced a 3.6- to 4.9-fold increase in bradykinin-stimulated PGE2 release as measured by radioimmunoassay. Under these conditions the cell phospholipids contained 3.9-times more linoleic acid and 5.6-times more arachidonic acid, with the inositol, ethanolamine and choline phosphoglycerie fractions becoming enriched in arachidonic acid. By contrast, supplementation with arachidonic acid did not enhance bradykinin-stimulated PGE2 release even though the arachidonic acid content of the cell phospholipids was increased 8.8-fold. The distribution of radioactive prostaglandin products was unchanged by these fatty acid enrichments, with PGE2 accounting for 55 to 68% of the total output from [1-14C]arachidonic acid. Linoleic acid supplementation also produced a 2.5-fold increase in PGE2 formation stimulated by extracellular arachidonic acid, whereas supplementation during culture with arachidonic acid caused a 55 to 80% inhibition. This difference cannot be accounted for by changes in the ability of the cells to incorporate extracellular arachidonic acid. it is suggested that at least some of the effects of linoleate supplementation on prostaglandin production are due to the resulting enrichment of the intracellular phospholipid substrate pools with arachidonic acid. In addition, it appears that prolonged exposure to arachidonic acid during culture has an overriding inhibitory effect on prostaglandin production even though the total cell lipids bocome highly enriched in arachidonate.  相似文献   

3.
We have investigated whether exposure of human platelets to elevated concentrations of linoleic acid, the principal dietary polyunsaturate, would influence platelet thromboxane A2 release. Platelets were incubated with albumin-bound linoleic acid at 30°C for 24 h, with prostaglandin E1 added to prevent aggregation. The linoleic acid supplemented platelets released, on averaged, 50% less thromboxane A2 in response to stimulation with thrombin than corresponding control platelets. Other fatty acids were without appreciable effect. The inhibition of thrombin-stimulated thromboxane A2 release was dependent on the time and temperature of incubation, as well as on the concentration of added linoleic acid. Supplementation increased the amount of linoleic acid in the platelet phospholipids, but the arachidonic acid content of the phospholipids was reduced. [1-14C]Linoleic acid was not converted to arachidonic acid by the platelets. Linoleic acid was released exclusively form the inositol phosphoglycerides when the enriched platelets were stimulated with thrombin. The linoleate-enriched platelets converted less [1-14C]arachidonic acid to all prostaglandin products, suggesting that the platelet cyclooxygenase was partially inhibited.  相似文献   

4.
We have investigated whether the presence of other fatty acids in physiologic amounts will influence the effects of eicosapentaenoic acid on cellular lipid metabolism and prostaglandin production. Eicosapentaenoic acid uptake by cultured bovine aortic endothelial cells was time and concentration dependent. At concentrations between 1 and 25 microM, most of the eicosapentaenoic acid was incorporated into phospholipids and of this, 60-90% was present in choline phosphoglycerides. Eicosapentaenoic acid inhibited arachidonic acid uptake and conversion to prostacyclin (prostaglandin I2) but was not itself converted to eicosanoids. Only small effects on the uptake of 10 microM eicosapentaenoic acid occurred when palmitic, stearic or oleic acids were added to the medium in concentrations up to 75 microM. In contrast, eicosapentaenoic acid uptake was reduced considerably by the presence of linoleic, n-6 eicosatrienoic, arachidonic or docosahexaenoic acids. Although a 100 microM mixture of palmitic, stearic, oleic and linoleic acid (25:10:50:15) had little effect on the uptake of 10 or 20 microM eicosapentaenoic acid, less of this acid was channeled into endothelial phospholipids. However, the fatty acid mixture did not prevent the inhibitory effect of eicosapentaenoic acid on prostaglandin I2 formation in response to either arachidonic acid or ionophore A23187. An 8 h exposure to eicosapentaenoic acid was required for the inhibition to become appreciable and, after 16 h, prostaglandin I2 production was reduced by as much as 60%. These findings indicate that the capacity of aortic endothelial cells to produce prostaglandin I2 is decreased by continuous exposure to eicosapentaenoic acid. Even if the eicosapentaenoic acid is present as a small percentage of a physiologic fatty acid mixture, it is still readily incorporated into endothelial phospholipids and retains its inhibitory effect against endothelial prostaglandin I2 formation. Therefore, these actions may be representative of the in vivo effects of eicosapentaenoic acid on the endothelium.  相似文献   

5.
Cultured bovine aortic endothelial cells convert arachidonic acid to docosatetraenoic acid and also take up docosatetraenoic acid from the extracellular fluid. After a 24-h incubation with biosynthetically prepared [3H]docosatetraenoic acid, about 20% of the cellular fatty acid radioactivity was converted to arachidonic acid. Furthermore, in pulse-chase experiments, the decrease in phospholipid docosatetraenoic acid content was accompanied by an increase in arachidonic acid, providing additional evidence for retroconversion. These findings suggest that one possible function of docosatetraenoic acid in endothelial cells is to serve as a source of arachidonic acid. The endothelial cells can release docosatetraenoic acid when they are stimulated with ionophore A23187, but they do not form appreciable amounts of eicosanoids from docosatetraenoic acid. Enrichment of the endothelial cells with docosatetraenoic acid reduced their capacity to produce prostacyclin (PGI2) in response to ionophore A23187. This may be related to the fact that docosatetraenoic acid enrichment caused a 40% reduction in the arachidonic acid content of the inositol phosphoglycerides. In addition, less prostacyclin was formed when the enriched cells were incubated with arachidonic acid, suggesting that docosatetraenoic acid also may act as an inhibitor of prostaglandin synthesis in endothelial cells.  相似文献   

6.
Linoleic acid, arachidonic acid, prostaglandin E1, and prostaglandin E2 stimulated the proliferation of mammary epithelial cells in serum-free primary cultures only in the presence of epidermal growth factor. Linoleate-stimulated growth was manifest later in culture when proliferation, initiated by epidermal growth factor only, reached a plateau while linoleate-supplemented epidermal growth factor cultures continued to proliferate. The cultures in the plateau phase of growth could be restimulated to grow by adding either linoleic acid or prostaglandin E2 to the media. While the linoleate response could be abolished by the cyclooxygenase inhibitor, indomethacin, prostaglandin E2-stimulated growth remained unaffected. Linoleic acid was metabolized to arachidonic acid and prostaglandin E2, both in the growing and resting cultures. Proliferating cells metabolized linoleate and prostaglandin E2 extensively so that neither the fatty acid nor prostaglandin E2 accumulated in large quantities in the proliferating cultures. The concentrations of prostaglandin E2 in growing cultures supplemented with linoleic acid were much higher than in cultures without it. These results suggest that the metabolism of linoleic acid leading to prostaglandin production, not its contribution to membrane polyunsaturation, is necessary for sustained growth of mammary epithelial cells in the presence of epidermal growth factor.  相似文献   

7.
Mouse brain microvessel endothelial cells convert eicosapentaenoic acid (EPA) to prostaglandin (PG) E3, PGI3, and several hydroxy fatty acid derivatives. Similar types of products are formed by these microvessel endothelial cells from arachidonic acid. The formation of PGI2 and PGE2 is reduced, however, when the brain microvessel endothelial cultures are incubated initially with EPA. Exposure to linolenic or docosahexaenoic acid also decreased the capacity of these microvessel endothelial cells to form PGI2 and PGE2, but the reductions were smaller than those produced by EPA. Like the endothelial cultures, intact mouse brain microvessels convert EPA into eicosanoids, and incubation with EPA reduces the subsequent capacity of the microvessels to produce PGI2 and PGE2. Brain microvessel endothelial cells took up less EPA than arachidonic acid, primarily due to lesser incorporation into the inositol, ethanolamine, and serine glycerophospholipids. By contrast, considerably more EPA than arachidonic acid was incorporated into triglycerides. These findings suggest that the microvessel endothelium may be a site of conversion of EPA to eicosanoids in the brain and that EPA availability can influence the amount of dienoic prostaglandins released by the brain microvasculature. Furthermore, the substantial incorporation of EPA into triglyceride suggests that this neutral lipid may play an important role in the processing and metabolism of EPA in brain microvessels.  相似文献   

8.
Human umbilical vein endothelial cells incorporate eicosapentaenoic acid (EPA) when this fatty acid is present in the culture medium. From 30 to 70% of the uptake remains as EPA, and much of the remainder is elongated to docosapentaenoic acid. All of the cellular glycerophospholipids become enriched with EPA and docosapentaenoic acid, with the largest increase in EPA occurring in the choline glycerophospholipids. When this fraction is enriched with EPA, it exhibits a large decrease in arachidonic acid content. Cultures exposed to tracer amounts of [1-14C]linolenic acid in 5% fetal bovine serum convert as much as 17% of the radioactivity to EPA. The conversion is reduced, however, in the presence of either 20% fetal bovine serum or 50 microM linolenic acid. Like arachidonic acid, some newly incorporated EPA was released from the endothelial cells when the cultures were exposed to thrombin. However, as compared with arachidonic acid, only very small amounts of EPA were converted to prostaglandins. Cultures enriched with EPA exhibited a 50 to 90% reduction in capacity to release prostacyclin (PGI2) when subsequently stimulated with thrombin, calcium ionophore A23187, or arachidonic acid. The degree of inhibition was dependent on the time of exposure to EPA and the EPA concentration, and it was not prevented by adding a reversible cyclooxygenase inhibitor, ibuprofen, during EPA supplementation. EPA appears to decrease the capacity of the endothelial cells to produce PGI2 in two ways: by reducing the arachidonic acid content of the cell phospholipid precursor pools and by acting as an inhibitor of prostaglandin production. These findings suggest that regimens designed to reduce platelet aggregation and thrombosis by EPA enrichment may also reduce the capacity of the endothelium to produce PGI2.  相似文献   

9.
Ascorbic acid (Asc), arachidonic acid (AA) and prostaglandin E2 (PGE2) are reported to be important in maintaining the stability of the cell matrix. Asc has also been shown to influence fatty acid (FA) and PGE2 synthesis, with the result that effects of Asc on cell growth are suggested to be mediated through the metabolism of these two compounds. This study examined the effect of Asc, supplemented over the concentration range of 0-100 micrograms/ml, on the in vitro cell growth of non-malignant LLCMK (monkey kidney) cells and malignant B16 murine melanoma cells. The effects of Asc supplementation on AA and PGE2 levels in the cell stroma and membrane fractions of the two cell types was also determined. Asc had no significant inhibitory or stimulatory effect on the growth of either the B16 or LLCMK cells. The total percentage AA composition determined in the B16 control cells (combined stroma and membrane fractions), was similar to that determined in the LLCMK control cells. Asc supplementation of the B16 cells, resulted in an inverse relationship between B16 cell growth and total percentage AA composition. PGE2 concentration in the control B16 cells (combined stroma and membrane fractions) was significantly higher than that detected in the control LLCMK cells. No PGE2 was detected in the B16 stroma fraction, with all appearing to be located in the membrane fraction. However, upon the supplementation of the B16 cells with increasing Asc concentrations, PGE2 appeared to be mobilized from the membrane fraction, resulting in increasing PGE2 levels in the stroma fraction relative to the membrane fraction. This was accompanied by a significant decrease in PGE2 concentration, in the membrane fraction. B16 cell growth and total (stroma and membrane fractions) PGE2 concentration in these cells was inversely related, when cultures were supplemented with increasing levels of Asc. Asc supplementation of the LLCMK cells did not appear to have any significant effect on AA or PGE2 metabolism in these cells.  相似文献   

10.
The addition of arachidonic acid at 250 μM to cultures of human embryo lung fibroblasts (IMR-90) increases cellular cyclic AMP levels within 5 minutes to approximately 15-fold over basal. Other unsaturated fatty acids, 11, 14, 17-eicosatrienoic, linoleic, 8, 11, 14-eicosatrienoic and oleic also cause similar rapid elevation of cellular cyclic AMP. During this time interval, no detectable conversion of the added linoleic or arachidonic acids to prostaglandin is observed. These cells produce prostaglandins at measurable concentrations in response to treatment with ascorbic acid or bradykinin. Saturated fatty acids have no influence on cyclic AMP levels in these cells. This effect of unsaturated fatty acids on cellular cyclic AMP levels varies with the cell type. For example, smooth muscle and endothelial cells obtained from the calf pulmonary artery show very little or no increase in cellular cyclic AMP upon exposure to arachidonic acid.  相似文献   

11.
The addition of arachidonic acid at 250 muM to cultures of human embryo lung fibroblasts (IMR-90) increases cellular cyclic AMP levels within 5 minutes to approximately 15-fold over basal. Other unsaturated fatty acids, 11, 14, 17-eicosatrienoic, linoleic, 8, 11, 14-eicosatrienoic and oleic also cause similar rapid elevation of cellular cyclic AMP. During this time interval, no detectable conversion of the added linoleic or arachidonic acids to prostaglandin is observed. These cells produce prostaglandins at measurable concentrations in response to treatment with ascorbic acid or bradykinin. Saturated fatty acids have no influence on cyclic AMP levels in these cells. This effect of unsaturated fatty acids on cellular cyclic AMP levels varies with the cell type. For example, smooth muscle and endothelial cells obtained from the calf pulmonary artery show very little or no increase in cellular cyclic AMP upon exposure to arachidonic acid.  相似文献   

12.
Male Sprague Dawley rats were fed a butter-enriched diet (50% fat) for 2 weeks and then supplemented orally with either 90 mg of ethyl arachidonate or ethyl linoleate daily for 2 weeks. For comparative reasons, one group of animals was fed standard laboratory rat chow for 4 weeks. Aortic prostacyclin (PGI2) production, platelet aggregation and thromboxane A2 (TXA2) production and plasma and aortic phospholipid (PL) fatty acids were measured. When compared to butter-fed rats, aortic PGI2 production, collagen-induced platelet aggregation and TXA2 production were significantly increased in rats supplemented with ethyl arachidonate to levels similar to those seen in chow-fed rats. Ethyl linoleate supplementation also tended to increase aortic PGI2 production, collagen-induced platelet aggregation and TXA2, but not to the same extent. These changes were accompanied by increases in the level of arachidonic acid and linoleic acid in aortic and plasma PL and a decrease in the level of eicosapentaenoic acid (EPA) and docsahexaenoic acid (DHA). These data indicate that supplementation with small doses of preformed arachidonic acid was more effective than supplementation with its precursor, linoleic acid, in reversing the effects on prostanoid production and phospholipid fatty acid composition in rats fed diets enriched with butter.  相似文献   

13.
Abstract— Brain phosphoglycerides are known to contain large amounts of polyunsaturated fatty acids (PUFA). However, neuroblastoma cells contain very low amounts of PUFA. Since the serum used for cell culture has been shown to be deficient in PUFA, a supplementation of this serum with various PUFA was undertaken. Linoleic, arachidonic and docosahexaenoic acids were incorporated in cell phosphoglycerides, mainly at the expense of oieic acid, while linolenic acid was only poorly incorporated. Linoleic. linolenic and arachidonic acids were transformed to their elongation and desaturation products; but the last step of transformation, which involves the action of a Δ 4 desaturase, was never observed. The levels of incorporation and transformation of exogenous PUFA could vary strikingly in different lines of neuroblastoma cells. The simultaneous addition of two PUFA (linoleic and linolenic acids) was followed by a reduction in the amount of their respective derivatives in cell phosphoglycerides. compared to that obtained when only one PUFA was given to the cells, suggesting a competitive inhibition of the desaturation of each PUFA. Such alterations in membrane lipids may provide a useful model for the study of membrane structure-function relationships.  相似文献   

14.
Polyoma-virus-transformed 3T3 fibroblasts (py 3T3 cells) produce considerably more prostaglandin E2 than regular 3T3 cells during growth in cell culture. Incubations with exogenous arachidonic acid showed no increase in prostaglandin-producing capacity in the transformed cells. The rates of degradation of prostaglandin E2 were similar in the two lines. After labeling of cells with [1-14C]arachidonic acid, py 3T3 cultures continuously released radioactivity while the release by regular 3T3 cells was almost completed after 3 h. Prostaglandin E2 production during short incubations in buffer at various times after medium change was constantly higher in the transformed cells. Furthermore, hydrocortisone completely inhibited prostaglandin synthesis by the transformed cells. These results suggest that the increased formation of prostaglandin by py 3T3 cells is due to continuously elevated activity of phospholipase A2 or another acyl hydrolase.  相似文献   

15.
Prostacyclin (prostaglandin I2) is the major product of arachidonic acid metabolism in vascular cells. Its physiological role may be linked to the ability of the cells to respond continuously with prostaglandin I2 production to a variety of stimuli. We report that human endothelial cells or bovine smooth muscle cells in culture respond with prostaglandin I2 synthesis to a first but not to a second stimulation with arachidonic acid. The development of this refractoriness was independent of the arachidonic acid concentration used (6.6-25 microM) and lasted for about 6 h. The same time was required for the cells to recover completely after inhibition of cyclooxygenase activity by aspirin. Neither cis-polyunsaturated fatty acids (linoleic or oleic acids) nor stearic acid (a long-chain saturated fatty acid) prevented the generation of prostaglandin I2 by arachidonic acid. Similarly to arachidonic acid, thrombin and ionophore A23187 could elicit vascular prostaglandin I2 synthesis only once. Pretreatment of the cells with arachidonic acid rendered the cells unresponsive to any other stimulus. These results indicate that the mechanism of the refractoriness induced by arachidonic acid was different from that induced by the other stimuli. It is proposed that vascular cells cannot be stimulated continuously to produce prostaglandin I2, but this process is regulated by different feedback mechanisms.  相似文献   

16.
Modification of fatty acid composition of Hep-G2 cells was achieved by 7-9 days of supplementation of culture medium with palmitic, oleic or linoleic acid. Cholesterol release into serum-free culture medium during 24 h of incubation was significantly lower in cells supplemented with linoleic acid, when compared to those supplemented with palmitic, oleic or no additional fatty acid. In cells cultured in the presence of linoleic acid, less [3H]cholesterol was esterified to cholesteryl ester and the mass of cholesteryl ester was significantly lower than in cells cultured with palmitic acid or with no additional fatty acid. The reduction in [3H]cholesterol secretion and the impairment in cholesterol esterification in linoleic acid-treated cells was prevented by addition of butylated hydroxytoluene or probucol concurrently with the fatty acid. The antioxidants also increased esterification and [3H]cholesterol release in cells supplemented with the other fatty acids. It is suggested that cholesterol secretion and esterification are sensitive to peroxidation.  相似文献   

17.
Two studies tested the hypothesis that eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN) reduced bovine endometrial and trophoblast prostaglandin F(2alpha) (PGF(2alpha)) and prostaglandin E(2) (PGE(2)) release during short-term culture. In Study 1, endometrial tissues were collected from non-lactating, non-pregnant cows and endometrial plus trophoblast tissues from pregnant cows 16 days post-insemination. In Study 2, endometrial and trophoblast tissues were collected on day 17 of pregnancy, from cows synchronised using a double prostaglandin (PG) or Ovagentrade mark synchronisation. Tissues were incubated in medium only (M) or media supplemented with fatty acids: eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN). In Study 1, PGE(2) release from 'pregnant' endometria was higher (P=0.094) than from 'non-pregnant' endometria, while PGF(2alpha) concentrations were similar. Fatty acids treatment had no effect on PGF(2alpha) or PGE(2) release from either pregnant or non-pregnant endometria. Individual fatty acid treatments had no effect on the ratio of PGF(2alpha) to PGE(2) from trophoblast tissues, but when the data from the 3 fatty acid treatments were combined (EPA, DHA and LIN treatment groups) the ratio of PGF(2alpha) to PGE(2) was reduced (P=0.026) when compared to medium only. In Study 2, PGE(2) concentrations were higher (P=0.013) from the trophoblast collected from Ovagentrade mark cows as compared to that of the PG synchrony group. When the data from the 3-omega fatty acids were combined (DHA and EPA treatment groups), the 3-omega treatments decreased (P<0.05) PGE(2) biosynthesis from both endometrial and trophoblast tissues from animals synchronised following PG synchrony but not Ovagentrade mark synchrony. Short-term culture with low concentrations of 3-omega fatty acids tended to reduce prostaglandin release from trophoblast collected 16 days after insemination, with the type of synchrony modifying PGE(2) production from the trophoblast tissues collected 17 days after insemination. The ability of exogenous fatty acids to modify embryonic prostaglandin release needs to be examined in the context of supplementing dairy cows with different sources of fats. Synchronisation method altered trophoblast PGE(2) release, highlighting the importance of the hormonal environment in modifying embryonic prostaglandin synthesis and release.  相似文献   

18.
We have shown that intestinal epithelial restitution is stimulated by n-3 and n-6 fatty acids. The current studies were undertaken to elucidate the mechanistic pathway(s) involved in this fatty acid modulation of restitution. Inhibition of phospholipase A(2) and eicosanoid synthesis and its effect on fatty acid stimulation of cellular migration in confluent, wounded IEC-6 monolayers was examined. The production of prostaglandin E(2) and transforming growth factor beta(1) were also measured in fatty acid supplemented cultures. Inhibition of phospholipase A(2) attenuated the effect of fatty acid stimulation of restitution in both n-3 and n-6 supplemented cultures. The lipoxygenase inhibitor, nordihydorguaretic acid (2 &mgr;mol/L), had no effect on stimulation of migration by fatty acids. The cyclooxygenase inhibitor piroxicam (5 &mgr;mol/L) and cyclooxygenase-2 specific inhibitors dexamethasone (2 &mgr;mol/L) and NS-398 (10 &mgr;mol/L) all attenuated the fatty acid stimulation of migration by n-6 fatty acids but had no effect on n-3 stimulated restitution. Prostaglandin E(2) production in n-6 supplemented cultures was significantly greater than in control and n-3 supplemented cultures and was partially inhibited by dexamethasone and NS-398. Latent transforming growth factor beta(1) production in n-3 supplemented cultures was significantly higher than baseline and n-6 supplemented cultures. Docosapentaenoic acid supplementation significantly enhanced the restitution process and NS-398 treatment had no effect on this stimulation of cellular migration. The liberation of fatty acid from the sn-2 position of phospholipid appears to be necessary for both n-3 and n-6 fatty acid stimulation of restitution. N-6 fatty acid modulation of restitution appears to be mediated through the production of eicosanoid products, however, prostaglandin E(2) does not appear to be the sole prostanoid involved. N-3 supplementation elevates the production of latent transforming growth factor beta(1) and may be responsible for n-3 mediated stimulation of restitution. These results further emphasize that n-3 and n-6 fatty acids convey their effects through unique pathways.  相似文献   

19.
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]α-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.  相似文献   

20.
The effects of feeding n-6 and n-3 fatty acids to broiler hens on cardiac ventricle fatty acid composition, and prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) production of hatched chicks were investigated. Fertile eggs obtained from hens fed diets supplemented with 3.5% sunflower oil (Low n-3), 1.75% sunflower+1.75% fish oil (Medium n-3), or 3.5% fish oil (High n-3) were incubated. The hatched chicks were fed a diet containing 18:3 n-3, but devoid of longer chain n-6 and n-3 fatty acids for 42 days. Arachidonic acid content was lower in the cardiac ventricle of High n-3 and Medium n-3 compared to Low n-3 birds for up to 2 weeks (P<0.002). Long chain n-3 fatty acids were higher in the cardiac ventricle of chicks from hens fed High and Medium n-3 diets when compared to chicks from hens fed the Low n-3 diet. Differences in long chain n-3 fatty acids persisted up to four weeks of age (P<0.001). Peripheral blood mononuclear cells (PBMNC) of 7-day-old High n-3 broilers produced significantly lower PGE2 and TXA2 than PBMNC from Low n-3 and Medium n-3 birds. These results indicate that maternal dietary n-3 fatty acids increases cardiac ventricle n-3 fatty acids while reducing arachidonic acid and ex vivo PGE2 and TXA2 production during growth in broiler chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号