首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of SDS-insoluble protein aggregates in affected neurons is a cellular pathological feature of polyglutamine (polyQ) disease. We identified a multi-WD-domain protein, receptor for activated protein kinase C1 (RACK1), as a novel polyQ aggregate component from a Drosophila transgenic polyQ disease model. We showed that WD domains were crucial determinants for the recruitment of RACK1 to polyQ aggregates. Over-expression of the human RACK1 protein suppressed polyQ-induced neurodegeneration in vivo. This is the first report to demonstrate the involvement of WD-domain proteins in polyQ pathogenesis, and the proteomic approach described here can be applied to the investigation of other protein aggregation disorders including Alzheimer’s and Parkinson’s diseases.  相似文献   

2.
Polyglutamine (polyQ) diseases represent a neuropathologically heterogeneous group of disorders. The common theme of these disorders is an elongated polyQ tract in otherwise unrelated proteins. So far, only symptomatic treatment can be applied to patients suffering from polyQ diseases. Despite extensive research, the molecular mechanisms underlying polyQ-induced toxicity are largely unknown. To gain insight into polyQ pathology, we performed a large-scale RNAi screen in Drosophila to identify modifiers of toxicity induced by expression of truncated Ataxin-3 containing a disease-causing polyQ expansion. We identified various unknown modifiers of polyQ toxicity. Large-scale analysis indicated a dissociation of polyQ aggregation and toxicity.  相似文献   

3.
Oligomer formation and accumulation of pathogenic proteins are key events in the pathomechanisms of many neurodegenerative diseases, such as Alzheimer disease, ALS, and the polyglutamine (polyQ) diseases. The autophagy-lysosome degradation system may have therapeutic potential against these diseases because it can degrade even large oligomers. Although p62/sequestosome 1 plays a physiological role in selective autophagy of ubiquitinated proteins, whether p62 recognizes and degrades pathogenic proteins in neurodegenerative diseases has remained unclear. In this study, to elucidate the role of p62 in such pathogenic conditions in vivo, we used Drosophila models of neurodegenerative diseases. We found that p62 predominantly co-localizes with cytoplasmic polyQ protein aggregates in the MJDtr-Q78 polyQ disease model flies. Loss of p62 function resulted in significant exacerbation of eye degeneration in these flies. Immunohistochemical analyses revealed enhanced accumulation of cytoplasmic aggregates by p62 knockdown in the MJDtr-Q78 flies, similarly to knockdown of autophagy-related genes (Atgs). Knockdown of both p62 and Atgs did not show any additive effects in the MJDtr-Q78 flies, implying that p62 function is mediated by autophagy. Biochemical analyses showed that loss of p62 function delays the degradation of the MJDtr-Q78 protein, especially its oligomeric species. We also found that loss of p62 function exacerbates eye degeneration in another polyQ disease fly model as well as in ALS model flies. We therefore conclude that p62 plays a protective role against polyQ-induced neurodegeneration, by the autophagic degradation of polyQ protein oligomers in vivo, indicating its therapeutic potential for the polyQ diseases and possibly for other neurodegenerative diseases.  相似文献   

4.
Expansions of polyglutamine (polyQ) tracts in different proteins cause 9 neurodegenerative conditions, such as Huntington disease and various ataxias. However, many normal mammalian proteins contain shorter polyQ tracts. As these are frequently conserved in multiple species, it is likely that some of these polyQ tracts have important but unknown biological functions. Here we review our recent study showing that the polyQ domain of the deubiquitinase ATXN3/ataxin-3 enables its interaction with BECN1/beclin 1, a key macroautophagy/autophagy initiator. ATXN3 regulates autophagy by deubiquitinating BECN1 and protecting it from proteasomal degradation. Interestingly, expanded polyQ tracts in other polyglutamine disease proteins compete with the shorter ATXN3 polyQ stretch and interfere with the ATXN3-BECN1 interaction. This competition results in decreased BECN1 levels and impaired starvation-induced autophagy, which phenocopies the loss of autophagic function mediated by ATXN3. Our findings describe a new autophagy-protective mechanism that may be altered in multiple neurodegenerative diseases.  相似文献   

5.
The nine polyglutamine (polyQ) neurodegenerative diseases are caused in part by a gain-of-function mechanism involving protein misfolding, the deposition of β-sheet-rich aggregates and neuronal toxicity. While previous experimental evidence suggests that the polyQ-induced misfolding mechanism is context dependent, the properties of the host protein, including the domain architecture and location of the polyQ tract, have not been investigated. Here, we use variants of a model polyQ-containing protein to systematically determine the effect of the location and number of flanking folded domains on polyQ-mediated aggregation. Our data indicate that when a pathological-length polyQ tract is present between two domains, it aggregates more slowly than the same-length tract in a terminal location within the protein. We also demonstrate that increasing the number of flanking domains decreases the polyQ protein's aggregation rate. Our experimental data, together with a bioinformatic analysis of all human proteins possessing polyQ tracts, suggest that repeat location and protein domain architecture affect the disease susceptibility of human polyQ proteins.  相似文献   

6.
7.
Polyglutamine (polyQ) diseases, such as Huntington's disease and Machado-Joseph disease (MJD), are caused by gain of toxic function of abnormally expanded polyQ tracts. Here, we show that expanded polyQ of ataxin-3 (Q79C), a gene that causes MJD, stimulates Ku70 acetylation, which in turn dissociates the proapoptotic protein Bax from Ku70, thereby promoting Bax activation and subsequent cell death. The Q79C-induced cell death was significantly blocked by Ku70 or Bax-inhibiting peptides (BIPs) designed from Ku70. Furthermore, expression of SIRT1 deacetylase and the addition of a SIRT1 agonist, resveratrol, reduced Q79C toxicity. In contrast, mimicking acetylation of Ku70 abolished the ability of Ku70 to suppress Q79C toxicity. These results indicate that Bax and Ku70 acetylation play important roles in Q79C-induced cell death, and that BIP may be useful in the development of therapeutics for polyQ diseases.  相似文献   

8.
9.
《Autophagy》2013,9(1):21-25
Expanded polyglutamine (polyQ) proteins aggregate intracellularly in Huntington’s disease and other neurodegenerative disorders. The lysosomal degradation pathway, autophagy, is known to promote clearance of polyQ protein aggregates in cultured cells. Moreover, basal autophagy in neuronal cells in mice prevents neurodegeneration by suppressing the accumulation of abnormal intracellular proteins. However, it is not yet known whether autophagy genes play a role in vivo in protecting against disease caused by mutant aggregate-prone, expanded polyQ proteins. To examine this question, we used two models of polyQ-induced toxicity in C. elegans, including the expression of polyQ40 aggregates in muscle and the expression of a human huntingtin disease fragment containing a polyQ tract of 150 residues (Htn-Q150) in ASH sensory neurons. Here, we show that genetic inactivation of autophagy genes accelerates the accumulation of polyQ40 aggregates in C. elegans muscle cells and exacerbates polyQ40-induced muscle dysfunction. Autophagy gene inactivation also increases the accumulation of Htn-Q150 aggregates in C. elegans ASH sensory neurons and results in enhanced neurodegeneration. These data provide in vivo genetic evidence that autophagy genes suppress the accumulation of polyQ aggregates and protect cells from disease caused by polyQ toxicity.  相似文献   

10.
Jia K  Hart AC  Levine B 《Autophagy》2007,3(1):21-25
Expanded polyglutamine (polyQ) proteins aggregate intracellularly in Huntington's disease and other neurodegenerative disorders. The lysosomal degradation pathway, autophagy, is known to promote clearance of polyQ protein aggregates in cultured cells. Moreover, basal autophagy in neuronal cells in mice prevents neurodegeneration by suppressing the accumulation of abnormal intracellular proteins. However, it is not yet known whether autophagy genes play a role in vivo in protecting against disease caused by mutant aggregate-prone, expanded polyQ proteins. To examine this question, we used two models of polyQ-induced toxicity in C. elegans, including the expression of polyQ40 aggregates in muscle and the expression of a human huntingtin disease fragment containing a polyQ tract of 150 residues (Htn-Q150) in ASH sensory neurons. Here, we show that genetic inactivation of autophagy genes accelerates the accumulation of polyQ40 aggregates in C. elegans muscle cells and exacerbates polyQ40-induced muscle dysfunction. Autophagy gene inactivation also increases the accumulation of Htn-Q150 aggregates in C. elegans ASH sensory neurons and results in enhanced neurodegeneration. These data provide in vivo genetic evidence that autophagy genes suppress the accumulation of polyQ aggregates and protect cells from disease caused by polyQ toxicity.  相似文献   

11.
A network of chaperones and ubiquitin ligases sustain intracellular proteostasis and is integral in preventing aggregation of misfolded proteins associated with various neurodegenerative diseases. Using cell-based studies of polyglutamine (polyQ) diseases, spinocerebellar ataxia type 3 (SCA3) and Huntington’s disease (HD), we aimed to identify crucial ubiquitin ligases that protect against polyQ aggregation. We report here that Praja1 (PJA1), a Ring-H2 ubiquitin ligase abundantly expressed in the brain, is diminished when polyQ repeat proteins (ataxin-3/huntingtin) are expressed in cells. PJA1 interacts with polyQ proteins and enhances their degradation, resulting in reduced aggregate formation. Down-regulation of PJA1 in neuronal cells increases polyQ protein levels vis-a-vis their aggregates, rendering the cells vulnerable to cytotoxic stress. Finally, PJA1 suppresses polyQ toxicity in yeast and rescues eye degeneration in a transgenic Drosophila model of SCA3. Thus, our findings establish PJA1 as a robust ubiquitin ligase of polyQ proteins and induction of which might serve as an alternative therapeutic strategy in handling cytotoxic polyQ aggregates.  相似文献   

12.
13.
14.
Polyglutamine (polyQ) expansion mutation causes conformational, neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. These diseases are characterized by the aggregation of misfolded proteins, such as amyloid fibrils, which are toxic to cells. Amyloid fibrils are formed by a nucleated growth polymerization reaction. Unexpectedly, the critical nucleus of polyQ aggregation was found to be a monomer, suggesting that the rate-limiting nucleation process of polyQ aggregation involves the folding of mutated protein monomers. The monoclonal antibody 1C2 selectively recognizes expanded pathogenic and aggregate-prone glutamine repeats in polyQ diseases, including Huntington's disease (HD), as well as binding to polyleucine. We have therefore assayed the in vitro and in vivo aggregation kinetics of these monomeric proteins. We found that the repeat-length-dependent differences in aggregation lag times of variable lengths of polyQ and polyleucine tracts were consistently related to the integration of the length-dependent intensity of anti-1C2 signal on soluble monomers of these proteins. Surprisingly, the correlation between the aggregation lag times of polyQ tracts and the intensity of anti-1C2 signal on soluble monomers of huntingtin precisely reflected the repeat-length dependent age-of-onset of HD patients. These data suggest that the alterations in protein surface structure due to polyQ expansion mutation in soluble monomers of the mutated proteins act as an amyloid-precursor epitope. This, in turn, leads to nucleation, a key process in protein aggregation, thereby determining HD onset. These findings provide new insight into the gain-of-function mechanisms of polyQ diseases, in which polyQ expansion leads to nucleation rather than having toxic effects on the cells.  相似文献   

15.
Huntington’s disease (HD) and other polyglutamine (polyQ) neurodegenerative diseases are characterized by neuronal accumulation of the disease protein, suggesting that the cellular ability to handle abnormal proteins is compromised. As a multi-subunit protein localized in the mitochondria of eukaryotic cells, the F0F1-ATP synthase α belongs to the family of stress proteins HSP60. Currently, mounting evidences indicate F0F1-ATP synthase α may play a role in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Recently, ATP synthase α was reported to have protective and therapeutic roles in primary cardiacmyocytes of iron-overloaded rats by lowering ROS production. However, little is understood about the role of ATP synthase α in cell death and neurodegeneration. Here, we demonstrate that overexpression of ATP synthase α suppresses huntingtin (htt) polyQ aggregation and toxicity in transfected SH-SY5Y cell lines. Overexpression of ATP synthase α is able to protect cell death caused by polyglutamine-expanded htt. Transient overexpression of ATP synthase α suppresses the aggregate formation by estimation of polyQ aggregation, Western blot analysis, and filter trap assay (FTA) in transfected SH-SY5Y cells. These results indicated that ATP synthase α has a strong inhibitory effect on polyglutamine aggregate formation and toxicity in vitro, and suggest a novel neuroprotective role of ATP synthase α.  相似文献   

16.
A significant body of evidence shows that polyglutamine (polyQ) tracts are important for various biological functions. The characteristic polymorphism of polyQ length is thought to play an important role in the adaptation of organisms to their environment. However, proteins with expanded polyQ are prone to form amyloids, which cause diseases in humans and animals and toxicity in yeast. Saccharomyces cerevisiae contain at least 8 proteins which can form heritable amyloids, called prions, and most of them are proteins with glutamine- and asparagine-enriched domains. Yeast prion amyloids are susceptible to fragmentation by the protein disaggregase Hsp104, which allows them to propagate and be transmitted to daughter cells during cell divisions. We have previously shown that interspersion of polyQ domains with some non-glutamine residues stimulates fragmentation of polyQ amyloids in yeast and that yeast prion domains are often enriched in one of these residues. These findings indicate that yeast prion domains may have derived from polyQ tracts via accumulation and amplification of mutations. The same hypothesis may be applied to polyasparagine (polyN) tracts, since they display similar properties to polyQ, such as length polymorphism, amyloid formation and toxicity. We propose that mutations in polyQ/N may be favored by natural selection thus making prion domains likely by-products of the evolution of polyQ/N.  相似文献   

17.
An intriguing set of neurodegenerative disease are the nine disorders caused by the expansion of a unstable trinucleotide CAG repeat where the repeat is located within the coding of the affected gene, that is, the polyglutamine (polyQ) diseases. A gain-of-function mechanism for toxicity in polyQ diseases is widely thought to have a major role in pathogenesis. Yet, the specific nature of this gain-of-function is a matter of considerable discussion. The basic issue concerns whether toxicity stems from the native or normal function of the affected protein versus a novel function induced by polyQ expansion. For at least three of the polyQ disease considerable evidence is accumulating that pathology is mediated by a polyQ-induced exaggeration of a native function of the host protein.  相似文献   

18.
At least nine dominant neurodegenerative diseases are caused by expansion of CAG repeats in coding regions of specific genes that result in abnormal elongation of polyglutamine (polyQ) tracts in the corresponding gene products. When above a threshold that is specific for each disease the expanded polyQ repeats promote protein aggregation, misfolding and neuronal cell death. The length of the polyQ tract inversely correlates with the age at disease onset. It has been observed that interruption of the CAG tract by silent (CAA) or missense (CAT) mutations may strongly modulate the effect of the expansion and delay the onset age. We have carried out an extensive study in which we have complemented DNA sequence determination with cellular and biophysical models. By sequencing cloned normal and expanded SCA1 alleles taken from our cohort of ataxia patients we have determined sequence variations not detected by allele sizing and observed for the first time that repeat instability can occur even in the presence of CAG interruptions. We show that histidine interrupted pathogenic alleles occur with relatively high frequency (11%) and that the age at onset inversely correlates linearly with the longer uninterrupted CAG stretch. This could be reproduced in a cellular model to support the hypothesis of a linear behaviour of polyQ. We clarified by in vitro studies the mechanism by which polyQ interruption slows down aggregation. Our study contributes to the understanding of the role of polyQ interruption in the SCA1 phenotype with regards to age at disease onset, prognosis and transmission.  相似文献   

19.
E3 ubiquitin ligases catalyze the conjugation of ubiquitin onto proteins, which acts as a signal for targeting proteins for degradation by the proteasome. Hrd1 is an endoplasmic reticulum (ER) membrane-spanning E3 with its catalytic active RING finger facing the cytosol. We speculated that this topology might allow Hrd1 to ubiquitinate misfolded proteins in the cytosol. We tested this idea by using polyglutamine (polyQ)-containing huntingtin (htt) protein as a model substrate. We found that the protein levels of Hrd1 were increased in cells overexpressing the N-terminal fragment of htt containig an expanded polyQ tract (httN). Forced expression of Hrd1 enhanced the degradation of httN in a RING finger-dependent manner, whereas silencing of endogenous Hrd1 expression by RNA interference stabilized httN. Degradation of httN was found to be p97/VCP-dependent, but independent of Ufd1 and Npl4, all of which are thought to form a complex with Hrd1 during ER-associated degradation. Consistent with its role as an E3 for httN, we demonstrate that Hrd1 interacts with and ubiquitinates httN. Subcellular fractionation and confocal microscopy revealed that Hrd1recruits HttN to the ER and co-localizes with juxtanuclear aggregates of httN in cells. Interaction of Hrd1 with httN was found to be independent of the length of the polyglutamine tract. However, httN with expanded polyglutamine tracts appeared to be a preferred substrate for Hrd1. Functionally, we found that Hrd1 protects cells against the httN-induced cell death. These results suggest that Hrd1 is a novel htt-interacting protein that can target pathogenic httN for degradation and is able to protect cells against httN-induced cell death.  相似文献   

20.
Polyglutamine (polyQ) diseases are genetically inherited neurodegenerative disorders. They are caused by mutations that result in polyQ expansions of particular proteins. Mutant proteins form intranuclear aggregates, induce cytotoxicity and cause neuronal cell death. Protein interaction data suggest that polyQ regions modulate interactions between coiled‐coil (CC) domains. In the case of the polyQ disease spinocerebellar ataxia type‐1 (SCA1), interacting proteins with CC domains further enhance aggregation and toxicity of mutant ataxin‐1 (ATXN1). Here, we suggest that CC partners interacting with the polyQ region of a mutant protein, increase its aggregation while partners that interact with a different region reduce the formation of aggregates. Computational analysis of genetic screens revealed that CC‐rich proteins are highly enriched among genes that enhance pathogenicity of polyQ proteins, supporting our hypothesis. We therefore suggest that blocking interactions between mutant polyQ proteins and their CC partners might constitute a promising preventive strategy against neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号