首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以廉价的合成香兰素掺入香荚兰提取物是香荚兰提取业中的严重问题。它涉及每年香荚兰提取物产品的几百万美元交易。香兰素是天然香荚兰豆经熟化后的产物,而合成香兰素通常是用造纸厂的亚硫酸盐废液中的木质素合成的。1唡合成香兰素的香味强度相当于1加仑单倍(Single-fold)香荚兰提取物;前者每唡价格为0.33美元,而后者1加仑价格达40美元,很明显,以合成香兰素进行掺假,在经济效益上十分诱人。 香荚兰豆提取物掺假的检测方法:  相似文献   

2.
异丁香酚的生物转化及香兰素的合成   总被引:3,自引:0,他引:3  
利用粘质沙雷氏菌菌株AB 90027产生的离体酶催化异丁香酚进行生物转化,结合TLC、GC、UV-VISI、R等测试手段对异丁香酚的转化途径进行了探讨,借助薄层扫描法对不同反应体系下产物香兰素的产率作了比较,并研究了可催化异丁香酚合成香兰素的酶在细胞的存在位置。结果表明:在酶的作用下,异丁香酚分别经过阿魏酸和香兰素两条途径开环降解成小分子,中间产物香兰素产率可达10.90%,催化合成香兰素的酶主要是胞外酶。  相似文献   

3.
香兰素是一种十分重要的香料,在较多行业中用途广泛。天然来源的香兰素受诸多因素的限制,不能满足市场需求,因此化学法合成的香兰素是主要原料来源。近年来,随着自然资源的不断枯竭以及人们对环境保护意识的增强,通过微生物转化适宜的底物生物合成香兰素逐渐变为研究热点。本文综述了以丁香酚、异丁香酚和阿魏酸为底物的细菌、真菌生产香兰素的相关研究进展,阐述丁香酚、异丁香酚、阿魏酸产香兰素代谢途径的研究,以及生物技术在这一领域的运用。香兰素的生物合成具有广阔的发展和市场应用前景。  相似文献   

4.
香兰素是世界上最重要的香料之一,广泛应用在食品饮料、香精香料和医药工业等领域中,全球每年的需求量超过16 000 t.鉴于人们对纯天然绿色食品的追求日益增长,天然香兰素高效的生产方法也成为研究的热点.通过对各种香兰素生产方法的比较,明确提出微生物合成方法的主导地位,综述了香兰素的生物合成途径以及合成关键基因和酶等方面的研究进展,分析探讨了不同生物合成途径的优劣之处,并展望了利用微生物高产天然香兰素存在的瓶颈以及有潜力的发展方向.  相似文献   

5.
未经高温处理的黑曲霉诱导物对香荚兰细胞培养产生香兰素有促进作用;苯丙氨酸有利于香荚兰细胞生长,但对香兰素的合成无影响;阿魏酸则减缓细胞生长,明显促进香兰素的合成,但其浓度不宜高于5mmol/L。  相似文献   

6.
随着香荚兰提取物愈来愈广泛地应用于医药工业和食品工业中,天然香料将成为香料工业的主流,这一事实已愈来愈清楚了。尽管天然香荚兰豆提取物的价格远远高于合成香兰素。香兰素集中体现了天然香荚兰夏与化学合成香兰素之间的明显差别。据分析,用化学方法制造的香兰素所含的香味成份只是天然香荚兰豆提取物的20%。香荚兰豆中含有200多种  相似文献   

7.
诱导物及前体物对香荚兰细胞悬浮培养产生香兰素的影响   总被引:5,自引:0,他引:5  
未轻高温国处理的黑曲霉诱导物对香英兰细胞培养产生香兰素有促进作用;苯丙氨酸有利于香英兰工,但对香兰素的合成无影响;阿魏酸则减缓细胞生长,明显促进香兰素的合成,但其浓度不宜高于5mmol/L。  相似文献   

8.
一、前言天然黄樟油是蒸馏黄樟树的皮及根所得的一种天然精油,主要成份黄樟油素,是合成洋荣莉醛、香兰素、乙基香兰素、浓馥香兰素和异丁香酚等的重要原料,它的制成品广泛应用子香料、日用化工、食品、医药、电镀、农药和陶瓷工业等领域。在合成洋茉莉醛的过程中,尚有5~30%的黄樟油素未经反应,一并作为前馏份被蒸出。由于前馏份含有3~10%的樟脑,无论在连续性还是间歇性精馏塔中,均会产生樟脑阻塔现象。在连续性精馏塔中,樟脑阻塔现象可以通过增大原料进料量来排除。在间歇性精馏塔中,这一问题一直得不到很  相似文献   

9.
验证了荧光假单胞菌(Pseudomonas fluorescensATCC13525)香兰素脱氢酶基因(vanillin dehydrogenasegene,vdh)的功能。基因vdh表达产物(Vdh)的活性测定结果显示Vdh具有很高的活性,而且不经IPTG诱导的Vdh也具有同样高的活性。经过4 h的体外酶促反应,重组蛋白Vdh能把95%以上的香兰素转化为香兰素酸,从而验证了vdh基因的表达产物具有香兰素脱氢酶的功能。同时发现NAD 是从香兰素到香兰素酸体外转化必不可少的因素。  相似文献   

10.
复合诱变法选育香兰素高转化率菌株   总被引:1,自引:0,他引:1  
通过紫外线照射和He-Ne激光修复对香兰素生产菌链霉菌Streptomyces sp.L1936进行复合诱变,得到香兰素高产菌株Streptomyces sp.L1936-8。结果表明:出发菌株经过诱变处理后,脱乙酰酶酶活提高了75%,香兰素氧化酶酶活降低了37.5%,香兰素产量提高了33%。  相似文献   

11.
Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.  相似文献   

12.
Vanilla is the most commonly used natural flavoring agent in industries like food, flavoring, medicine, and fragrance. Vanillin can be obtained naturally, chemically, or through a biotechnological process. However, the yield from vanilla pods is low and does not meet market demand, and the use of vanillin produced by chemical synthesis is restricted in the food and pharmaceutical industries. As a result, the biotechnological process is the most efficient and cost-effective method for producing vanillin with consumer-demanding properties while also supporting industrial applications. Toxin-free biovanillin production, based on renewable sources such as industrial wastes or by-products, is a promising approach. In addition, only natural-labeled vanillin is approved for use in the food industry. Accordingly, this review focuses on biovanillin production from lactic acid bacteria (LAB), which is generally recognized as safe (GRAS), and the cost-cutting efforts that are utilized to improve the efficiency of biotransformation of inexpensive and readily available sources. LABs can utilize agro-wastes rich in ferulic acid to produce ferulic acid, which is then employed in vanillin production via fermentation, and various efforts have been applied to enhance the vanillin titer. However, different designs, such as response surface methods, using immobilized cells or pure enzymes for the spontaneous release of vanillin, are strongly advised.  相似文献   

13.
Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.  相似文献   

14.
Exploring the mechanisms of tolerance in microorganisms to vanillin, which is derived from lignin, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. Our objective was to identify the genes related to vanillin tolerance in Saccharomyces cerevisiae. We investigated the effects on vanillin tolerance of several genes that have site mutations in the highly vanillin-tolerant strain EMV-8 compared to its parental line NAN-27. The results showed that overexpression of GCY1, a gene that encodes an aldo-keto reductase that also has mRNA-binding activity, YPR1, a paralog of GCY1 that encodes an aldo-keto reductase, PEX5, a gene that encodes a peroxisomal membrane signal receptor and MBF1, a gene that encodes a multiprotein bridging factor increase the specific growth rates (μ) by 49%, 41%, 44% and 48 %, respectively, in medium containing 6 mmol l−1 vanillin. Among these gene products, Gcy1p and Ypr1p showed NADPH-dependent and NAD(P)H-dependent vanillin reductase activity, respectively. The reductase-inactive mutant Gcy1pY56F also increased vanillin tolerance in S. cerevisiae, suggesting that other mechanisms exist. Although TRS85 and PEX5, genes for which the mRNAs are binding targets of Gcy1p, were shown to be related to vanillin tolerance, both the mRNA and protein levels of these genes were not changed by overexpression of GCY1. The relationship between the mRNA-binding activity of Gcy1p and its positive effect on vanillin tolerance is still not clear. Finally, we found that the point mutation D112A in Mbf1p, which disrupts the binding of Mbf1p and the TATA element-binding protein (TBP), did not decrease the positive effect of Mbf1p on vanillin tolerance. This indicates that the binding of Mbf1p and TBP is not necessary for the positive effect on vanillin tolerance mediated by Mbf1p. We have successfully identified new genes related to vanillin tolerance and provided novel targets that can be used to improve the vanillin tolerance of S. cerevisiae. Moreover, we have extended our understanding of the proteins encoded by these genes.  相似文献   

15.
The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.  相似文献   

16.
The modifying effects of vanillin on the cytotoxicity and 6-thioguanine (6TG)-resistant mutations induced by two different types of chemical mutagens, ethyl methanesulfonate (EMS) and hydrogen peroxide (H2O2), were examined using cultured Chinese hamster V79 cells. The effects of vanillin on H2O2-induced chromosome aberrations were also examined. Vanillin had a dose-dependent enhancing effect on EMS-induced cytotoxicity and 6TG-resistant mutations, when cells were simultaneously treated with vanillin. The post-treatment with vanillin during the mutation expression time of cells after treatment with EMS also showed an enhancement of the frequency of mutations induced by EMS. However, vanillin suppressed the cytotoxicity induced by H2O2 when cells were post-treated with vanillin after H2O2 treatment. Vanillin showed no change in the absence of activity of H2O2 to induce mutations. Post-treatment with vanillin also suppressed the chromosome aberrations induced by H2O2. The differential effects of vanillin were probably due to the quality of mutagen-induced DNA lesions and vanillin might influence at least two different kinds of cellular repair functions. The mechanisms by which vanillin enhances or suppresses chemical-induced cytotoxicity, mutations and chromosome aberrations are discussed.  相似文献   

17.
The vanillin dehydrogenase gene (ligV), which conferred the ability to transform vanillin into vanillate on Escherichia coli, was isolated from Sphingomonas paucimobilis SYK-6. The ligV gene consists of a 1,440-bp open reading frame encoding a polypeptide with a molecular mass of 50,301 Da. The deduced amino acid sequence of ligV showed about 50% identity with the known vanillin dehydrogenases of Pseudomonas vanillin degraders. The gene product of ligV (LigV) produced in E. coli preferred NAD+ to NADP+ and exhibited a broad substrate preference, including vanillin, benzaldehyde, protocatechualdehyde, m-anisaldehyde, and p-hydroxybenzaldehyde, but the activity toward syringaldehyde was less than 5% of that toward vanillin. Insertional inactivation of ligV in SYK-6 indicated that ligV is essential for normal growth on vanillin. On the other hand, growth on syringaldehyde was only slightly affected by ligV disruption, indicating the presence of a syringaldehyde dehydrogenase gene or genes in SYK-6.  相似文献   

18.
Vanillin, generated by acid hydrolysis of lignocellulose, acts as a potent inhibitor of the growth of the yeast Saccharomyces cerevisiae. Here, we investigated the cellular processes affected by vanillin using high-content, image-based profiling. Among 4,718 non-essential yeast deletion mutants, the morphology of those defective in the large ribosomal subunit showed significant similarity to that of vanillin-treated cells. The defects in these mutants were clustered in three domains of the ribosome: the mRNA tunnel entrance, exit and backbone required for small subunit attachment. To confirm that vanillin inhibited ribosomal function, we assessed polysome and messenger ribonucleoprotein granule formation after treatment with vanillin. Analysis of polysome profiles showed disassembly of the polysomes in the presence of vanillin. Processing bodies and stress granules, which are composed of non-translating mRNAs and various proteins, were formed after treatment with vanillin. These results suggest that vanillin represses translation in yeast cells.  相似文献   

19.
To examine the influence of a phenolic compound on the production of cellulolytic and xylanolytic enzymes of a woodrotting fungusCoriolus versicolor, a two-dimensional map of enzyme activity was constructed with various concentrations of cellobiose and vanillin. The productions of CMCase, xylanase, β-glucosidase, and β-xylosidase increased with higher cellobiose concentration and were markedly enhanced by addition of vanillin. Higher ratio of vanillin/cellobiose activated the production of these enzymes. Only acetyl esterase, which is not actively produced at the ligninolytic stage ofC. versicolor, was inhibited by the monolignol vanillin. As the presence of vanillin is considered to approximate conditions of wood decay more closely than its absence, the present result demonstrates that addition of vanillin, a phenolic compound, enhanced the production of cellulolytic and xylanolytic enzymes for wood cell wall degradation.  相似文献   

20.
Vanillin is one of the world's principal flavoring compounds, and is used extensively in the food industry. The potential vanillin production of the bacteria was compared to select and clone genes which were appropriate for highly productive vanillin production byE. coli. Thefcs (feruloyl-CoA synthetase) andech (enoyl-CoA hydratase/aldolase) genes cloned fromAmycolatopsis sp. strain HR104 andDelftia acidovorans were introduced to pBAD24 vector with PBAD promoter and were named pDAHEF and pDDAEF, respectively. We observed 160 mg/L vanillin production withE. coli harboring pDAHEF, whereas 10 mg/L of vanillin was observed with pDDAEF. Vanillin production was optimized withE. coli harboring pDAHEF. Induction of thefcs andech genes from pDAHEF was optimized with the addition of 13.3 mM arabinose at 18 h of culture, from which 450 mg/L of vanillin was produced. The feeding time and concentration of ferulic acid were also optimized by the supplementation of 0.2% ferulic acid at 18 h of culture, from which 500 mg/L of vanillin was obtained. Under the above optimized condition of arabinose induction and ferulic acid supplementation, vanillin production was carried out with four different types of media, M9, LB, 2YT, and TB. The highest vanillin production, 580 mg/L, was obtained with LB medium, a 3.6 fold increase in comparison to the 160 mg/L obtained before the optimization of vanillin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号