首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Two new cDNAs, human GPR107 and murine GPR108, were cloned from mammalian lung that are members of a novel gene family encoding proteins that are predicted to have an amino-terminal hydrophobic signal peptide sequence, a long extracellular domain and a carboxy-terminal seven transmembrane domain (LUSTR domain) similar to GPCRs. The 18-exon human GPR107 gene is located at 9q34.2-3 and spans 86.4 kb and the cDNA encodes a 552 residue protein. The closely related, but not homologous, 17-exon murine Gpr108 gene is located at 17C-D and spans 12.8 kb. The murine Gpr108 cDNA encodes a 562 residue protein that has 49% identity to human GPR107. They are distantly related to two other genes, transmembrane protein 87A and 87B that encode LUSTR domain-containing proteins in the human genome. LUSTR proteins are also found in Drosophila, Saccharomyces and Arabidopsis, but are absent from bacteria, archaea and viruses. This suggests that GPCRs are present in higher plants.  相似文献   

2.
The extent and temporal characteristics of G protein-coupled receptor (GPCR) signaling are shaped by the regulator of G protein signaling (RGS) proteins, which promote G protein deactivation. With hundreds of GPCRs and dozens of RGS proteins, compartmentalization plays a key role in establishing signaling specificity. However, the molecular details and mechanisms of this process are poorly understood. In this paper, we report that the R7 group of RGS regulators is controlled by interaction with two previously uncharacterized orphan GPCRs: GPR158 and GPR179. We show that GPR158/179 recruited RGS complexes to the plasma membrane and augmented their ability to regulate GPCR signaling. The loss of GPR179 in a mouse model of night blindness prevented targeting of RGS to the postsynaptic compartment of bipolar neurons in the retina, illuminating the role of GPR179 in night vision. We propose that the interaction of RGS proteins with orphan GPCRs promotes signaling selectivity in G protein pathways.  相似文献   

3.
Cyclic AMP regulates multiple neuronal functions, including neurite outgrowth and axonal regeneration. GPR3, GPR6, and GPR12 make up a family of constitutively active G protein-coupled receptors (GPCRs) that share greater than 50% identity and 65% similarity at the amino acid level. They are highly expressed in the central nervous system, and their expression in various cell lines results in constitutive stimulation of cAMP production. When the constitutively active GPCRs were overexpressed in rat cerebellar granule neurons in culture, the transfected neurons exhibited significantly enhanced neurite outgrowth and overcame growth inhibition caused by myelin-associated glycoprotein. GPR12-mediated neurite outgrowth was the most prominent and was shown to depend on G(s) and cAMP-dependent protein kinase. Moreover, the GPR12-mediated rescue from myelin-associated glycoprotein inhibition was attributable to cAMP-dependent protein kinase-mediated inhibition of the small GTPase, RhoA. Among the three receptors, GPR3 was revealed to be enriched in the developing rat cerebellar granule neurons. When the endogenous GPR3 was knocked down, significant reduction of neurite growth was observed, which was reversed by expression of either GPR3 or GPR12. Taken together, our results indicate that expression of the constitutively active GPCRs up-regulates cAMP production in neurons, stimulates neurite outgrowth, and counteracts myelin inhibition. Further characterization of the GPCRs in developing and injured mammalian neurons should provide insights into how basal cAMP levels are regulated in neurons and could establish a firm scientific foundation for applying receptor biology to treatment of various neurological disorders.  相似文献   

4.
The recent cloning of a growth hormone secretagogue receptor (GHS-R) from human pituitary gland and brain identified a third G protein-coupled receptor (GPC-R) involved in the control of growth hormone release. The nucleotide sequence of the GHS-R is most closely related to the neurotensin receptor-1 (NT-R1) (35% overall protein identity). Two human GPC-Rs related to both the type 1a GHS-R and NT-Rs were cloned and characterized. Hybridization at low posthybridizational stringency with restriction enzyme-digested human genomic DNA resulted in the identification of a genomic clone encoding a first GHS-R/NT-R family member (GPR38). A cDNA clone was identified encoding a second GHS-R-related gene (GPR39). GPR38 and GPR39 share significant amino acid sequence identity with the GHS-R and NT-Rs 1 and 2. An acidic residue (E124) in TM-3, essential for the binding and activation of the GHS-R by structurally dissimilar GHSs, was conserved in GPR38 and GPR39. GPR38 is encoded by a single gene expressed in thyroid gland, stomach, and bone marrow. GPR39 is encoded by a highly conserved single-copy gene, expressed in brain and other peripheral tissues. Fluorescencein situhybridization localized the genes for GPR38 and GPR39 to separate chromosomes, distinct from the gene encoding the GHS-R and NT-R type 1. The ligand-binding and functional properties of GPR38 and GPR39 remain to be determined.  相似文献   

5.
Cell surface density of G protein-coupled receptors (GPCRs) is controlled by dynamic molecular interactions that often involve recognition of the distinct sequence signals on the cargo receptors. We reported previously that the RXR-type dibasic motif in the distal C-terminal tail of an HIV coreceptor GPR15 negatively regulates the cell surface expression by mediating the coatomer protein I complex-dependent retrograde transport to the endoplasmic reticulum (ER). Here we demonstrate that another pair of basic residues (Arg310-Arg311) in the membrane-proximal region of the C-terminal tail plays a pivotal role in mediating the anterograde trafficking of GPR15. The Ala mutation of the C-terminal membrane-proximal basic residues (MPBRs) (R310/311A) abolished the O-glycosylation and cell surface expression of GPR15. The subcellular fractionation and immunocytochemistry assays indicated that the R310/311A mutant was more localized in the ER but much less in the trans-Golgi when compared with the wild-type GPR15, suggesting the positive role of Arg310-Arg311 in the ER-to-Golgi transport of GPR15. Sequence analysis on human GPCRs showed that the basic residues are frequent in the membrane-proximal region of the C-terminal tail. Similar to GPR15, mutation of the C-terminal MPBRs resulted in a marked reduction of the cell surface expression in multiple different GPCRs. Our results suggest that the C-terminal MPBRs are critically involved in mediating the anterograde trafficking of a broad range of membrane proteins, including GPCRs.  相似文献   

6.
One-third of the approximately 400 nonodorant G protein-coupled receptors (GPCRs) are still orphans. Although a considerable number of these receptors are likely to transduce cellular signals in response to ligands that remain to be identified, they may also have ligand-independent functions. Several members of the GPCR family have been shown to modulate the function of other receptors through heterodimerization. We show that GPR50, an orphan GPCR, heterodimerizes constitutively and specifically with MT(1) and MT(2) melatonin receptors, using biochemical and biophysical approaches in intact cells. Whereas the association between GPR50 and MT(2) did not modify MT(2) function, GPR50 abolished high-affinity agonist binding and G protein coupling to the MT(1) protomer engaged in the heterodimer. Deletion of the large C-terminal tail of GPR50 suppressed the inhibitory effect of GPR50 on MT(1) without affecting heterodimerization, indicating that this domain regulates the interaction of regulatory proteins to MT(1). Pairing orphan GPCRs to potential heterodimerization partners might be of clinical importance and may become a general strategy to better understand the function of orphan GPCRs.  相似文献   

7.
G protein-coupled receptor 3 (GPR3) is a constitutively active receptor that maintains high 3′-5′-cyclic adenosine monophosphate (cAMP) levels required for meiotic arrest in oocytes and CNS function. Ligand-activated G protein-coupled receptors (GPCRs) signal at the cell surface and are silenced by phosphorylation and β-arrestin recruitment upon endocytosis. Some GPCRs can also signal from endosomes following internalization. Little is known about the localization, signaling, and regulation of constitutively active GPCRs. We demonstrate herein that exogenously-expressed GPR3 localizes to the cell membrane and undergoes internalization in HEK293 cells. Inhibition of endocytosis increased cell surface-localized GPR3 and cAMP levels while overexpression of GPCR-Kinase 2 (GRK2) and β-arrestin-2 decreased cell surface-localized GPR3 and cAMP levels. GRK2 by itself is sufficient to decrease cAMP production but both GRK2 and β-arrestin-2 are required to decrease cell surface GPR3. GRK2 regulates GPR3 independently of its kinase activity since a kinase inactive GRK2-K220R mutant significantly decreased cAMP levels. However, GRK2-K220R and β-arrestin-2 do not diminish cell surface GPR3, suggesting that phosphorylation is required to induce GPR3 internalization. To understand which residues are targeted for desensitization, we mutated potential phosphorylation sites in the third intracellular loop and C-terminus and examined the effect on cAMP and receptor surface localization. Mutation of residues in the third intracellular loop dramatically increased cAMP levels whereas mutation of residues in the C-terminus produced cAMP levels comparable to GPR3 wild type. Interestingly, both mutations significantly reduced cell surface expression of GPR3. These results demonstrate that GPR3 signals at the plasma membrane and can be silenced by GRK2/β-arrestin overexpression. These results also strongly implicate the serine and/or threonine residues in the third intracellular loop in the regulation of GPR3 activity.  相似文献   

8.
A number of G protein-coupled receptors (GPCRs) localize to primary cilia but the functional significance of cilia to GPCR signaling remains incompletely understood. We investigated this question by focusing on the D1 dopamine receptor (D1R) and beta-2 adrenergic receptor (B2AR), closely related catecholamine receptors that signal by stimulating production of the diffusible second messenger cyclic AMP (cAMP) but differ in localization relative to cilia. D1Rs robustly concentrate on cilia of IMCD3 cells, as shown previously in other ciliated cell types, but disrupting cilia did not affect D1R surface expression or ability to mediate a concentration-dependent cAMP response. By developing a FRET-based biosensor suitable for resolving intra- from extra- ciliary cAMP changes, we found that the D1R-mediated cAMP response is not restricted to cilia and extends into the extra-ciliary cytoplasm. Conversely the B2AR, which we show here is effectively excluded from cilia, also generated a cAMP response in both ciliary and extra-ciliary compartments. We identified a distinct signaling effect of primary cilia through investigating GPR88, an orphan GPCR that is co-expressed with the D1R in brain, and which we show here is targeted to cilia similarly to the D1R. In ciliated cells, mutational activation of GPR88 strongly reduced the D1R-mediated cAMP response but did not affect the B2AR-mediated response. In marked contrast, in non-ciliated cells, GPR88 was distributed throughout the plasma membrane and inhibited the B2AR response. These results identify a discrete ‘insulating’ function of primary cilia in conferring selectivity on integrated catecholamine signaling through lateral segregation of receptors, and suggest a cellular activity of GPR88 that might underlie its effects on dopamine-dependent behaviors.  相似文献   

9.
In G protein-coupled receptors (GPCRs), the interaction between the cytosolic ends of transmembrane helix 3 (TM3) and TM6 was shown to play an important role in the transition from inactive to active states. According to the currently prevailing model, constructed for rhodopsin and structurally related receptors, the arginine of the conserved "DRY" motif located at the cytosolic end of TM3 (R3.50) would interact with acidic residues in TM3 (D/E3.49) and TM6 (D/E6.30) at the resting state and shift out of this polar pocket upon agonist stimulation. However, 30% of GPCRs, including all chemokine receptors, contain a positively charged residue at position 6.30 which does not support an interaction with R3.50. We have investigated the role of R6.30 in this receptor family by using CCR5 as a model. R6.30D and R6.30E substitutions, which allow an ionic interaction with R3.50, resulted in an almost silent receptor devoid of constitutive activity and strongly impaired in its ability to bind chemokines but still able to internalize. R6.30A and R6.30Q substitutions, allowing weaker interactions with R3.50, preserved chemokine binding but reduced the constitutive activity and the functional response to chemokines. These results indicate that the constitutive and ligand-promoted activity of CCR5 can be modified by modulating the interaction between the DRY motif in TM3 and residues in TM6 suggesting that the overall structure and activation mechanism are well conserved in GPCRs. However, the molecular interactions locking the inactive state must be different in receptors devoid of D/E6.30.  相似文献   

10.
G-protein-coupled receptors (GPCRs) have been implicated in the tumorigenesis and metastasis of human cancers and are considered amongst the most desirable targets for drug development. Utilizing a robust quantitative PCR array, we quantified expression of 94 human GPCRs, including 75 orphan GPCRs and 19 chemokine receptors, and 36 chemokine ligands, in 40 melanoma metastases from different individuals and benign nevi. Inter-metastatic site comparison revealed that orphan GPR174 and CCL28 are statistically significantly overexpressed in subcutaneous metastases, while P2RY5 is overexpressed in brain metastases. Comparison between metastases (all three metastatic sites) and benign nevi revealed that 16 genes, including six orphan receptors (GPR18, GPR34, GPR119, GPR160, GPR183 and P2RY10) and chemokine receptors CCR5, CXCR4, and CXCR6, were statistically significantly differentially expressed. Subsequent functional experiments in yeast and melanoma cells indicate that GPR18, the most abundantly overexpressed orphan GPCR in all melanoma metastases, is constitutively active and inhibits apoptosis, indicating an important role for GPR18 in tumor cell survival. GPR18 and five other orphan GPCRs with yet unknown biological function may be considered potential novel anticancer targets in metastatic melanoma.  相似文献   

11.
Chemokine receptors (CRs) are 7-helix membrane proteins from the family of G-protein coupled receptors (GPCRs). A few human CRs act as cofactors for macrophage-tropic (M-tropic) human immunodeficiency virus type-1 (HIV-1) entry into cells, while others do not. In this study, we describe an application of molecular modeling techniques to delineate common molecular determinants that might be related to coreceptor activity, and the use of the data to identify other GPCRs as putative cofactors for M-tropic HIV-1 entry. Subsequently, the results were confirmed by an experimental approach. The sequences of extracellular domains (ECDs) of CRs were employed in a compatibility search against a database of environmental profiles derived for proteins with known spatial structure. The best-scoring sequence-profile alignments obtained for each ECD were compared in pairs to check for common patterns in residue environments, and consensus sequence-profile fits for ECDs were also derived. Similar hydrophobicity motifs were found in the first extracellular loops of the CRs CCR5, CCR3, and CCR2B, and are all used by M-tropic HIV-1 for cell entry. In contrast, other CRs did not reveal common motifs. However, the same environmental pattern was also delineated in the first extracellular loop of some human GPCRs showing either high (group 1) or low (group 2) degree of similarity of their polarity patterns with those in HIV-1 coreceptors. To address the question of whether the delineated molecular determinant plays a critical role in the receptor-virus binding, three of the identified GPCRs, bradykinin receptor (BRB2) and G-protein receptor (GPR)-CY6 from group 1, and GPR8 from group 2, were cloned and transfected into HeLa-CD4 cells, which are nonpermissive to M-tropic HIV-1 infection. We demonstrate that, similar to CCR5, the two selected GPCRs from group 1 were capable of mediating M-tropic HIV-1 entry, whereas GPR8 from group 2 did not serve as HIV-1 coreceptor. The potential biological significance of the identified structural motif shared by the human CCR5, CCR3, CCR2B and other GPCRs is discussed.  相似文献   

12.
13.
14.
15.
16.
17.
D Chen  X Liu  W Zhang  Y Shi 《PloS one》2012,7(7):e40764
G-protein coupled receptor 26 (GPR26) is a brain-specific orphan GPCR with high expression in the brain region that controls satiety. Depletion of GPR26 has been shown to increase fat storage in C. elegans, whereas GPR26 deficiency in the hypothalamus is associated with high genetic susceptibility to the onset of obesity in mice. However, the metabolic function of GPR26 in mammals remains elusive. Herein, we investigated a role of GPR26 in regulating energy homeostasis by generating mice with targeted deletion of the GPR26 gene. We show that GPR26 deficiency causes hyperphagia and hypometabolism, leading to early onset of diet-induced obesity. Accordingly, GPR26 deficiency also caused metabolic complications commonly associated with obesity, including glucose intolerance, hyperinsulinemia, and dyslipidemia. Moreover, consistent with hyperphagia in GPR26 null mice, GPR26 deficiency significantly increased hypothalamic activity of AMPK, a key signaling event that stimulates appetite. In further support of a regulatory role of GPR26 in satiety, GPR26 knockout mice also demonstrate hypersensitivity to treatment of rimonabant, an endocannabinoid receptor-1 antagonist commonly used to treat obesity by suppressing appetite in humans. Together, these findings identified a key role of GPR26 as a central regulator of energy homeostasis though modulation of hypothalamic AMPK activation.  相似文献   

18.
Neuropeptide B (NPB) has been recently identified as an endogenous ligand for GPR7 (NPBW1) and GPR8 (NPBW2) and has been shown to possess a relatively high selectivity for GPR7. In order to identify useful experimental tools to address physiological roles of GPR7, we synthesized a series of NPB analogs based on modification of an unbrominated form of 23 amino acids with amidated C-terminal, Br(-)NPB-23-NH(2). We confirmed that truncation of the N-terminal Trp residue resulted in almost complete loss of the binding affinity of NPB for GPR7 and GPR8, supporting the special importance of this residue for binding. Br(-)NPB-23-NH2 analogs in which each amino acid in positions 4, 5, 7, 8, 9, 10, 12 and 21 was replaced with alanine or glycine exhibited potent binding affinity comparable to the parent peptide. In contrast, replacement of Tyr(11) with alanine reduced the binding affinity for both GPR7 and GPR8 four fold. Of particular interest, several NPB analogs in which the consecutive amino acids from Pro4 to Val(13) were replaced with several units of 5-aminovaleric acid (Ava) linkers retained their potent affinity for GPR7. Furthermore, these Ava-substituted NPB analogs exhibited potent agonistic activities for GPR7 expressed in HEK293 cells. Among the Ava-substituted NPB analogs, analog 15 (Ava-5) and 17 (Ava-3) exhibited potency comparable to the parent peptide for GPR7 with significantly reduced activity for GPR8, resulting in high selectivity for GPR7. These highly potent and selective NPB analogs may be useful pharmacological tools to investigate the physiological and pharmacological roles of GPR7.  相似文献   

19.
Discovery and mapping of ten novel G protein-coupled receptor genes   总被引:10,自引:0,他引:10  
  相似文献   

20.
The directional migration of neutrophils towards inflammatory mediators, such as chemokines and cannabinoids, occurs via the activation of seven transmembrane G protein coupled receptors (7TM/GPCRs) and is a highly organized process. A crucial role for controlling neutrophil migration has been ascribed to the cannabinoid CB(2) receptor (CB(2)R), but additional modulatory sites distinct from CB(2)R have recently been suggested to impact CB(2)R-mediated effector functions in neutrophils. Here, we provide evidence that the recently de-orphanized 7TM/GPCR GPR55 potently modulates CB(2)R-mediated responses. We show that GPR55 is expressed in human blood neutrophils and its activation augments the migratory response towards the CB(2)R agonist 2-arachidonoylglycerol (2-AG), while inhibiting neutrophil degranulation and reactive oxygen species (ROS) production. Using HEK293 and HL60 cell lines, along with primary neutrophils, we show that GPR55 and CB(2)R interfere with each other's signaling pathways at the level of small GTPases, such as Rac2 and Cdc42. This ultimately leads to cellular polarization and efficient migration as well as abrogation of degranulation and ROS formation in neutrophils. Therefore, GPR55 limits the tissue-injuring inflammatory responses mediated by CB(2)R, while it synergizes with CB(2)R in recruiting neutrophils to sites of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号