首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The ATP binding cassette (ABC) transporter Atm1p of the mitochondrial inner membrane performs crucial roles in both the biogenesis of cytosolic/nuclear iron-sulfur proteins and cellular iron homeostasis. Since the function of the mitochondrial iron-sulfur cluster (ISC) assembly machinery is also required for these two processes, Atm1p is thought to translocate a still unknown product of this pathway to the cytosol. Here, we provide a detailed in vitro characterization of Atm1p in order to better understand its function. Atm1p was purified using an expression system in E. coli. The detergent-solubilised protein exhibits a stable ATPase activity. Reconstitution of Atm1p into proteoliposomes allowed us to determine the biochemical characteristics of the ATPase such as: (i) the strong inhibition by the transition state analogue vanadate, (ii) a Km value of 0.1 mM, and (iii) a turnover number of 127 min-1. The ATPase activity of ABC transporters is generally stimulated by their specific substrate. We used this property to define the chemical properties of the substrate transported by Atm1p. ATPase hydrolysis by Atm1p-containing proteoliposomes was specifically increased 3-5-fold by thiol-containing compounds, in particular by micromolar concentrations of cysteine thiol groups in peptides, even though Atm1p is not a general peptide transporter such as yeast Mdl1p or mammalian TAP which share sequence similarity with Atm1p. We speculate that the physiological substrate of Atm1p may contain multiple sulfhydryl groups in a peptidic environment.  相似文献   

2.
A mutation in the Arabidopsis gene STARIK leads to dwarfism and chlorosis of plants with an altered morphology of leaf and cell nuclei. We show that the STARIK gene encodes the mitochondrial ABC transporter Sta1 that belongs to a subfamily of Arabidopsis half-ABC transporters. The severity of the starik phenotype is suppressed by the ectopic expression of the STA2 homolog; thus, Sta1 function is partially redundant. Sta1 supports the maturation of cytosolic Fe/S protein in Deltaatm1 yeast, substituting for the ABC transporter Atm1p. Similar to Atm1p-deficient yeast, mitochondria of the starik mutant accumulated more nonheme, nonprotein iron than did wild-type organelles. We further show that plant mitochondria contain a putative l-cysteine desulfurase. Taken together, our results suggest that plant mitochondria possess an evolutionarily conserved Fe/S cluster biosynthesis pathway, which is linked to the intracellular iron homeostasis by the function of Atm1p-like ABC transporters.  相似文献   

3.
In an attempt to identify a mitochondrial ATP binding cassette (ABC) transporter, we have used the polymerase chain reaction to amplify 10 DNA fragments homologous to members of the ABC family from the yeast Saccharomyces cerevisiae. We disrupted five of the corresponding genes and found that one of the resulting null mutants barely grew on rich medium and failed to grow on minimal medium. This gene, termed ATM1, encodes a putative 'half-transporter' of 694 amino acids. Atm1p is synthesized with an N-terminal mitochondrial matrix-targeting signal and is located in the mitochondrial inner membrane, with its C-terminal ATPase domain exposed to the matrix. Cells lacking a functional ATM1 gene have an unstable mitochondrial genome and have white mitochondria that completely lack cytochromes. Atm1p is the first mitochondrial member of the ABC family to be identified and the only eukaryotic ABC transporter that has been shown to be necessary for normal cellular growth.  相似文献   

4.
G Kispal  P Csere  C Prohl    R Lill 《The EMBO journal》1999,18(14):3981-3989
Iron-sulfur (Fe/S) cluster-containing proteins catalyse a number of electron transfer and metabolic reactions. Little is known about the biogenesis of Fe/S clusters in the eukaryotic cell. Here, we demonstrate that mitochondria perform an essential role in the synthesis of both intra- and extra-mitochondrial Fe/S proteins. Nfs1p represents the yeast orthologue of the bacterial cysteine desulfurase NifS that initiates biogenesis by producing elemental sulfur. The matrix-localized protein is required for synthesis of both mitochondrial and cytosolic Fe/S proteins. The ATP-binding cassette (ABC) transporter Atm1p of the mitochondrial inner membrane performs an essential function only in the generation of cytosolic Fe/S proteins by mediating export of Fe/S cluster precursors synthesized by Nfs1p and other mitochondrial proteins. Assembly of cellular Fe/S clusters constitutes an indispensable biosynthetic task of mitochondria with potential relevance for an iron-storage disease and the control of cellular iron uptake.  相似文献   

5.
The ATP-binding cassette transporter MDL1 of Saccharomyces cerevisiae has been implicated in mitochondrial quality control, exporting degradation products of misassembled respiratory chain complexes. In the present study, we identified an unusually long leader sequence of 59 amino acids, which targets MDL1 to the inner mitochondrial membrane with its nucleotide-binding domain oriented to the matrix. By contrast, MDL1 lacking this leader sequence is directed into the endoplasmic reticulum membrane with the nucleotide-binding domain facing the cytosol. Remarkably, in both targeting routes, the ATP-binding cassette transporter maintains its intrinsic properties of membrane insertion and assembly, leading to homooligomeric complexes with similar activities in ATP hydrolysis. The physiological consequences of both targeting routes were elucidated in cells lacking the mitochondrial ATP-binding cassette transporter ATM1, which is essential for biogenesis of cytosolic iron-sulfur proteins. The mitochondrial MDL1 complex can complement ATM1 function, whereas the endoplasmic reticulum-targeted version, as well as MDL1 mutants deficient in ATP binding and hydrolysis, cannot overcome the Deltaatm1 growth phenotype.  相似文献   

6.
The role of the mitochondrion in cellular iron homeostasis   总被引:1,自引:0,他引:1  
The yeast ATM1 protein is essential for normal mitochondrial iron homeostasis. Deletion of ATM1 results in mitochondrial iron accumulation and oxidative mitochondrial damage. Mutations in ABC7, the human homolog of ATM1, result in X-linked sideroblastic anemia and ataxia. Here we show that a deletion of ATM1 also has effects on extra-mitochondrial iron metabolism. ATM1-deficient cells have an increased iron requirement for growth. When grown in iron-rich medium, mutant cells accumulate excess mitochondrial iron and have increased expression of the genes required for both high and low affinity iron uptake. Thus, ATM1 mutant cells simultaneously demonstrate features of both iron overload and iron starvation. Yfh1p is the yeast homolog of the human frataxin protein, which is deficient in Friedreich's ataxia. As in atm1 cells, a yfh1 deletion results in both mitochondrial iron accumulation and cytosolic iron starvation. In spite of their apparent roles in cellular iron homeostasis, we find that the expression of neither ATM1 nor YFH1 is responsive to cellular iron status. Based on these observations, we propose a model in which cellular iron is prioritized for use by the mitochondrion, and available to the remainder of the cell only after mitochondrial needs have been fulfilled.  相似文献   

7.
A potential correlation between mitochondrial and vacuolar functions is known to exit in yeast. Fission yeast atm1(+), SPAC15A10.01, encodes a putative half-type ABC transporter with an N-terminal mitochondrial-targeting signal. In an attempt to evaluate the possible involvement of mitochondrion in vacuole function, a functional analysis of atm1(+) was performed by gene disruption. Growth of the atm1 mutant was inhibited in the presence of oxidizing agents, and S. cerevisiae Atm1p was found to complement this growth defect. atm1Delta cells exhibited defects in fluid-phase endocytosis and vacuolar fusion under hypotonic stress. GFP-tagged Atm1p was observed to be localized in the mitochondria. These data strongly suggest that fission yeast Atm1p was not only involved in protection against oxidative stress, but also played a role in vacuolar functions.  相似文献   

8.
We isolated mitochondria from Saccharomyces cerevisiae to selectively study polysomes bound to the mitochondrial surface. The distribution of several mRNAs coding for mitochondrial proteins was examined in free and mitochondrion-bound polysomes. Some mRNAs exclusively localize to mitochondrion-bound polysomes, such as the ones coding for Atm1p, Cox10p, Tim44p, Atp2p, and Cot1p. In contrast, mRNAs encoding Cox6p, Cox5a, Aac1p, and Mir1p are found enriched in free cytoplasmic polysome fractions. Aac1p and Mir1p are transporters that lack cleavable presequences. Sequences required for mRNA asymmetric subcellular distribution were determined by analyzing the localization of reporter mRNAs containing the presequence coding region and/or the 3'-untranslated region (3'UTR) of ATM1, a gene encoding an ABC transporter of the mitochondrial inner membrane. Biochemical analyses of mitochondrion-bound polysomes and direct visualization of RNA localization in living yeast cells allowed us to demonstrate that either the presequence coding region or the 3'UTR of ATM1 is sufficient to allow the reporter mRNA to localize to the vicinity of the mitochondrion, independently of its translation. These data demonstrate that mRNA localization is one of the mechanisms used, in yeast, for segregating mitochondrial proteins.  相似文献   

9.
10.
The half-ABC transporter Mdl1 is localized in the inner membrane of mitochondria and mediates the export of peptides generated upon proteolysis of mitochondrial proteins. The physiological role of the peptides released from mitochondria is currently not understood. Here, we have analyzed the oligomeric state of Mdl1 in the inner membrane and demonstrate nucleotide-dependent binding to the F(1)F(0)-ATP synthase. Mdl1 forms homo-oligomeric, presumably dimeric complexes in the presence of ATP, but was found in association with the F(1)F(0)-ATP synthase at low ATP levels. Mdl1 binds membrane-embedded parts of the ATP synthase complex after the assembly of the F(1) and F(0) moieties. Although independent of Mdl1 activity, complex formation is impaired upon inhibition of the F(1)F(0)-ATP synthase with oligomycin or N,N'-dicyclohexylcarbodiimide. These results are consistent with an activation of Mdl1 upon dissociation from the ATP synthase and suggest a link of peptide export from mitochondria to the activity of the F(1)F(0)-ATP synthase and the cellular energy metabolism.  相似文献   

11.
Ariane Zutz  Hermann Schägger 《BBA》2009,1787(6):681-822
ABC transporters represent one of the largest families of membrane proteins that are found in all three phyla of life. Mitochondria comprise up to four ABC systems, ABCB7/ATM1, ABCB10/MDL1, ABCB8 and ABCB6. These half-transporters, which assemble into homodimeric complexes, are involved in a number of key cellular processes, e.g. biogenesis of cytosolic iron-sulfur clusters, heme biosynthesis, iron homeostasis, multidrug resistance, and protection against oxidative stress. Here, we summarize recent advances and emerging themes in our understanding of how these ABC systems in the inner and outer mitochondrial membrane fulfill their functions in important (patho) physiological processes, including neurodegenerative and hematological disorders.  相似文献   

12.
Atm1p, a mitochondrial half-type ATP-binding cassette (ABC) protein in Saccharomyces cerevisiae, transports a precursor of the iron-sulfur (Fe/S) cluster from mitochondria to the cytosol. We have identified a novel half-type human ABC protein, designating it MTABC3 (mammalian mitochondrial ABC protein 3). MTABC3 mRNA is ubiquitously expressed in all of the rat and human tissues examined. MTABC3 protein is shown to be present in the mitochondria, as assessed by immunoblot analysis and confocal microscopic analysis of subcellular fractions of Chinese hamster ovary cells stably expressing MTABC3. Accumulation of iron in the mitochondria, mitochondrial DNA damage, and respiratory dysfunction in the yeast ATM1 mutant strain (atm1-1 mutant cells) were almost fully reversed by expressing MTABC3 in these mutant cells. These results indicate that MTABC3 is a novel ortholog of the yeast and suggest an important role in mitochondrial function. Interestingly, the human MTABC3 gene has been mapped to chromosome 2q36, a region within the candidate locus for lethal neonatal metabolic syndrome, a disorder of the mitochondrial function associated with iron metabolism, indicating that MTABC3 is a candidate gene for this disorder.  相似文献   

13.
Biogenesis of Fe/S clusters involves a number of essential mitochondrial proteins. Here, we identify the essential Erv1p of Saccharomyces cerevisia mitochondria as a novel component that is specifically required for the maturation of Fe/S proteins in the cytosol, but not in mitochondria. Furthermore, Erv1p was found to be important for cellular iron homeostasis. The homologous mammalian protein ALR (‘augmenter of liver regeneration’), also termed hepatopoietin, can functionally replace defects in Erv1p and thus represents the mammalian orthologue of yeast Erv1p. Previously, a fragment of ALR was reported to exhibit an activity as an extracellular hepatotrophic growth factor. Both Erv1p and full-length ALR are located in the mitochondrial intermembrane space and represent the first components of this compartment with a role in the biogenesis of cytosolic Fe/S proteins. It is likely that Erv1p/ALR operates downstream of the mitochondrial ABC transporter Atm1p/ABC7/Sta1, which also executes a specific task in this essential biochemical process.  相似文献   

14.
The functional capabilities of one of the smallest subfamilies of ATP-binding cassette transporters from Arabidopsis thaliana, the AtATMs, are described. Designated AtATM1, AtAATM2, and AtATM3, these half-molecule ABC proteins are homologous to the yeast mitochondrial membrane protein ATM1 (ScATM1), which is clearly implicated in the export of mitochondrially synthesized iron/sulfur clusters. Yeast ATM1-deficient (atm1) mutants grow very slowly (have a petite phenotype), are respiration-deficient, accumulate toxic levels of iron in their mitochondria, and show enhanced compensatory high affinity iron uptake. Of the three Arabidopsis ATMs, AtATM3 bears the closest functional resemblance to ScATM1. Heterologously expressed AtATM3 is not only able to complement the yeast atm1 petite phenotype but is also able to suppress the constitutively high capacity for high affinity iron uptake associated with loss of the chromosomal copy of ScATM1, abrogate intra-mitochondrial iron hyperaccumulation, and restore mitochondrial respiratory function and cytochrome c levels. By comparison, AtATM1 only weakly suppresses the atm1 phenotype, and AtATM2 exerts little or no suppressive action but instead is toxic when expressed in this system. The differences between AtATM3 and AtATM1 are maintained after exchanging their target peptides, and these proteins as well as AtATM2 colocalize with the mitochondrial fluor MitoTracker Red when expressed in yeast as GFP fusions. Although its toxicity when heterologously expressed in yeast, except when fused with GFP, precludes the functional analysis of native AtATM2, a common function, mitochondrial export of Fe/S clusters or their precursors for the assembly of cytosolic Fe/S proteins, is inferred for AtATM3 and AtATM1.  相似文献   

15.
16.
Iron-sulfur (Fe/S) proteins play an important role in electron transfer processes and in various enzymatic reactions. In eukaryotic cells, known Fe/S proteins are localised in mitochondria, the cytosol and the nucleus. The biogenesis of these proteins has only recently become the focus of investigations. Mitochondria are the major site of Fe/S cluster biosynthesis in the cell. The organelles contain an Fe/S cluster biosynthesis apparatus that resembles that of prokaryotic cells. This apparatus consists of some ten proteins including a cysteine desulfurase producing elemental sulfur for biogenesis, a ferredoxin involved in reduction, and two chaperones. The mitochondrial Fe/S cluster synthesis apparatus not only assembles mitochondrial Fe/S proteins, but also initiates formation of extra-mitochondrial Fe/S proteins. This involves the export of sulfur and possibly iron from mitochondria to the cytosol, a reaction performed by the ABC transporter Atm1p of the mitochondrial inner membrane. A possible substrate of Atm1p is an Fe/S cluster that may be stabilised for transport. Constituents of the cytosol involved in the incorporation of the Fe/S cluster into apoproteins have not been described yet. Many of the mitochondrial proteins involved in Fe/S cluster formation are essential, illustrating the central importance of Fe/S proteins for life. Defects in Fe/S protein biogenesis are associated with the abnormal accumulation of iron within mitochondria and are the cause of an iron storage disease.  相似文献   

17.
18.
The sorting of an individual transmembrane (TM) segment of multi-spanning membrane proteins by the TIM23 complex in the mitochondrial inner membrane is poorly understood. Using the Mgm1 fusion approach, we attempted to assess the membrane insertion of individual TM segments of Mdl1p and Mdl2p, mitochondrial ABC transporters. Although these transporters share high sequence similarity, our results show that their membrane sorting patterns differ and that specific residues in TM domains strongly influence membrane insertion or translocation. These data imply that TIM23-mediated membrane insertion highly depends on the TM domain sequence context.  相似文献   

19.
The genome of the yeast Saccharomyces cerevisiae encodes the essential protein Nar1p that is conserved in virtually all eukaryotes and exhibits striking sequence similarity to bacterial iron-only hydrogenases. A human homologue of Nar1p was shown previously to bind prenylated prelamin A in the nucleus. However, yeast neither exhibits hydrogenase activity nor contains nuclear lamins. Here, we demonstrate that Nar1p is predominantly located in the cytosol and contains two adjacent iron-sulphur (Fe/S) clusters. Assembly of its Fe/S clusters crucially depends on components of the mitochondrial Fe/S cluster biosynthesis apparatus such as the cysteine desulphurase Nfs1p, the ferredoxin Yah1p and the ABC transporter Atm1p. Using functional studies in vivo, we show that Nar1p is required for maturation of cytosolic and nuclear, but not of mitochondrial, Fe/S proteins. Nar1p-depleted cells do not accumulate iron in mitochondria, distinguishing these cells from mutants in components of the mitochondrial Fe/S cluster biosynthesis apparatus. In conclusion, Nar1p represents a crucial, novel component of the emerging cytosolic Fe/S protein assembly machinery that catalyses an essential and ancient process in eukaryotes.  相似文献   

20.
Atm1 is an ABC transporter that is located in yeast mitochondria and has previously been implicated in the maturation of cytosolic iron-sulfur cluster proteins. The soluble nucleotide binding domain of Atm1 (Atm1-C) has been overexpressed in Escherichia coli, purified, and characterized. Dissociation constants (KD) for Atm1-C binding of ATP (KD approximately 97 microm, pH 7.3, and approximately 102 microm, pH 10.0) and ADP (KD approximately 43 microm, pH 7.3, and 92 microm, pH 10.0) were measured by fluorimetry. The higher binding affinity for ADP suggests that the transmembrane-spanning domain may be required to promote a structural change in the nucleotide binding domain to facilitate substrate export and ADP release. ADP also had an inhibitory effect on Atm1-C with an IC50 of 10 mm. The Michaelis-Menten constants Vmax, KM, and kcat of Atm1-C were measured as 1.822 microm min(-1), 513 microm, and 0.055 min(-1), respectively. The metal dependence of Atm1-C ATPase demonstrated a reactivity order of Mn2+ > Mg2+ > Co2+, while Mg2+ and Co2+ were both found to be inhibitory at higher concentrations. The pH profile and structural comparison with HisP are consistent with a role for His and Lys in promoting the ATPase activity. Structural analysis of Atm1-C by CD spectroscopy suggested a similarity of secondary structure to that found for a prokaryotic homologue (HisP), whereas modeling of the Atm1-C tertiary structure using HisP as a template is also consistent with a similarity in tertiary structure. Atm1-C tends to form a dimer or higher aggregation state at higher concentration; however, the concentration dependence of Atm1-C on ATPase activity and the results of a Hill analysis (napp = 1.1) demonstrated that there was essentially no cooperativity in ATP hydrolysis, in contrast to observations for the prokaryotic HisP transporter, which demonstrated full cooperativity for both full-length and the soluble domains. Accordingly, any cooperative response must be mediated through the transmembrane domain in the case of the eukaryotic Atm1 transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号