首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sample treatment method based on an aqueous two-phase system containing polyethylene glycol and dextran was developed for enhancing sensitivity in the detection of Listeria monocytogenes in soft cheese with PCR. The results suggest that the improved detection sensitivity following partitioning of the cheese homogenate in an aqueous two-phase system may be due to partitioning of the PCR inhibitors to the polyethylene glycol phase.  相似文献   

2.
The graft modification of dextran with benzoyl groups has been studied. The factors that affect the degree of substitution of benzoyl dextran were investigated. Phase diagrams for aqueous two-phase systems composed of polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran have been determined. Phase separation was also obtained in aqueous solution of two benzoyl dextran polymers with different degrees of substitution. A four-phase system was obtained with a mixture of polyethylene glycol, dextran and two kinds of benzoyl dextrans. The partitioning of methylene blue and a Procion yellow HE-3G dextran derivative were studied in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems and in systems of two benzoyl dextrans differing in degree of substitution. The proteins bovine serum albumin and glucose-6-phosphate dehydrogenase were partitioned in polyethylene glycol/benzoyl dextran aqueous two-phase systems and the effect of the degree of substitution of benzoyl dextran was studied. Chlorella pyrenoidosa, thylakoid membrane vesicles, plasma membrane vesicles and chloroplasts were partitioned in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems, and in a polyethylene glycol/dextran/benzoyl dextran four-phase system.  相似文献   

3.
The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)–dextran 37 500 (6% w/w)–0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20°C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG–dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.  相似文献   

4.
Affinity partitioning of lactate dehydrogenase (LDH) was studied in polyethylene glycol (PEG) /salt and PEG / hydroxypropyl starch (PES) aqueous two-phase systems, using free triazine dyes as their affinity ligands. The free dyes showed one-sided partition to the top PEG-rich phase and thus enhanced the affinity partitioning effect in the systems. A two-step affinity extraction process has been discussed for large scale purification of LDH from rabbit muscle.Hu Lin is one of the cooperator of the experiment.  相似文献   

5.
A new family of polymer conjugates is proposed to overcome constraints in the applicability of aqueous two-phase systems for the recovery of lactic acid. Polyethylene glycol-polyethylenimine (PEI) conjugates and ethylene oxide propylene oxide-PEI (EOPO-PEI) conjugates were synthesized. Aqueous two-phase systems were generated when the conjugates were mixed with fractionated dextran or crude hydrolyzed starch. With 2% phosphate buffer in the systems, phase diagrams with critical points of 3.9% EOPO-PEI-3.8% dextran (DEX) and 3.5% EOPO-PEI-7.9% crude starch were obtained. The phase separation temperature of 10% EOPO-PEI solutions titrated with lactic acid to pH 6 was 35 degrees C at 5% phosphate, and increased linearly to 63 degrees C at 2% phosphate. Lactic acid partitioned to the top conjugate-rich phase of the new aqueous two-phase systems. In particular, the lactic acid partition coefficient was 2.1 in 10% EOPO-PEI-8% DEX systems containing 2% phosphate. In the same systems, the partitioning of the lactic acid bacterium, Lactococcus lactis subsp. lactis, was 0.45. The partitioning of propionic, succinic, and citric acids was also determined in the new aqueous two-phase systems.  相似文献   

6.
Biosurfactants and aqueous two-phase fermentation   总被引:3,自引:0,他引:3  
The partition of surfactants and a biosurfactant-producing microorganism was studied in polyethylene glycol and dextran aqueous two-phase systems. In the presence of sodium phosphate, surfactants distributed themselves according to charge. Cationic surfactants preferred the bottom phase, while anionic surfactants were attracted to the top phase. Incresing the phosphate molarity or the pH resulted in a more 1-sided surfactant partitioning. Biosurfactant partitioning was weaker than synthetic surfactant partitioning due to the weaker effective charge and lack to strong specific affinity for any of the phase-forming polymers. Bacillus Subtilis cells partitioned very storngly to the bottom phase. The bioscurfactant, surfactin, produced by this microorganism partitioned to the top phase. Batch fermentations were carried out in an aqueous 2-phase system. Surfactin was produced in larger quanities in the 2-phase fermentation than in the regular mineral salts medium.  相似文献   

7.
Summary We have determined phase diagrams at 22°C for the aqueous two-phase systems composed of dextran, polyethylene glycol, and water. The effects of polyethylene glycol and dextran molecular weight on phase separation are reported. These phase diagrams provide more complete data for dextran/PEG/water system, and will be needed for the correlation of biomolecule partitioning.  相似文献   

8.
New aqueous-aqueous two-phase systems composed of relatively low molecular weight polymers such as polyethylene glycol (PEG) (Mr: 1000-4000) and dextran (Mr: 10,000 and 40,000) were evaluated for purification of proteins by counter-current chromatography (CCC). The compositions of aqueous two-phase systems were optimized by measuring parameters such as viscosity and volume ratio between the two phases. CCC purification of a glucosyltransferase (GTF) from Streptococcus mutans (SM) cell-lysate was successfully demonstrated with a 7.5% PEG 3350-10% dextran T40 system containing 10mM potassium phosphate buffer at pH 9.0. After CCC purification, both PEG and dextran contained in the CCC fractions were easily removed by ultrafiltration in a short period of time. The fractionated column contents containing GTF were analyzed by enzymatic activity as well as sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The recovery of the enzyme from CCC fraction was over 95% as estimated by enzymatic activities.  相似文献   

9.
Bioconversions of corn starch and bovine hemoglobin in an aqueous two-phase system using α-amylase and papain immobilized on ultrafine silica particles (average diameter 15 nm) were studied. Both α-amylase and papain were immobilized onto the ultrafine silica particles with high efficiency by covalent cross-linking with glutaraldehyde, and both enzymes showed high activities. Since these immobilized enzymes were totally partitioned to the polyethylene glycol (PEG)-rich top phase in PEG/dextran aqueous two phase systems, the products were recovered from the bottom phase. These reaction systems were found to be effective for extractive bioconversions.  相似文献   

10.
In aqueous polyethylene glycol/dextran two-phase systems, the hydrophobicity, free volume, surface tension, and interfacial tension of the phases in equilibrium were measured as a function of pH and ionic strength. These parameters were found to change with pH, but the pattern and magnitude cannot explain the unusual partition of charged macromolecules, observed previously. The electrostatic potential difference was determined by a new experimental approach based on the measurement of the pH difference between the phases at equilibrium. In polyethylene glycol/dextran systems containing sodium chloride as ionized species, the electrostatic potential is not constant in the pH range 2 to 11. The partition behavior of charged macromolecules and its dependence on pH can be explained by the combined action of charge and phase potential. This conclusion was tested with poly-L-glutamate, which partitioned as predicted and in a pattern opposite to positively charged macro- molecules. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
Enzyme purification using temperature-induced phase formation.   总被引:1,自引:0,他引:1  
A new type of aqueous two-phase system composed of an ethylene oxide and propylene oxide random co-polymer, UCON 50-HB-5100, as the upper phase polymer and either dextran or hydroxypropyl starch as the lower phase polymer has been characterized and used to purify 3-phosphoglycerate kinase (EC 2.7.2.3) and hexokinase (EC 2.7.1.1) from bakers' yeast. The UCON 50-HB-5100 polymer has a cloud point of 55 degrees C at which temperature it phase separates from water. This cloud point can be lowered to 40 degrees C by the addition of 0.2 M sodium sulfate salt. The low cloud point of this UCON polymer makes it possible to obtain the target enzymes in a water and buffer solution, and to recover and recycle the UCON 50-HB-5100 polymer. The phase diagrams for the systems UCON 50-HB-5100/Dextran T500 and UCON 50-HB-5100/hydroxypropyl starch have been determined. Yeast homogenate was first partitioned in a system composed of a top phase containing UCON 50-HB-5100 and a bottom phase containing either dextran or hydroxypropyl starch. The top phase containing the enzyme free of cell debris was removed and the temperature increased above the cloud point of the UCON until a new two phase system composed of water as the top phase and a concentrated liquid UCON 50-HB-5100 bottom phase was formed. The water phase containing the enzyme was removed and the bottom phase containing the UCON 50-HB-5100 could be recycled to perform a second extraction.  相似文献   

12.
 In order to enhance the productivity of lactic acid and reduce the end-product inhibition of fermentation, the partitioning and growth of four different strains of lactic acid bacteria in three different aqueous two-phase systems were studied. Polyethyleneglycol/ dextran, polyethyleneglycol/hydroxypropyl starch polymer (HPS), and a random copolymer of ethylene oxide and propylene oxide (EO-PO)/HPS were used as polymer systems. One strain each of Lactococcus lactis subsp. lactis and of Lactobacillus delbrueckii subsp. delbrueckii partitioned completely to the interface and bottom phase in two-phase systems with low polymer concentrations of EO-PO/HPS100 and EO-PO/ HPS200. The growth and production of lactic acid by two of three L. lactis strains in a two-phase system with 5.5% (w/w) EO-PO and 12.0% (w/w) HPS100 were reduced by less than 10% compared with a reference fermentation in a normal growth medium. The viability of L. lactis subsp. lactis ATCC 19435 was maintained for at least 50 h and with four top-phase replacements during extractive fermentation in the EO-PO/HPS100 system. Moreover, when cell density reached the stationary phase in the first extractive fermentation, the lactate production in this aqueous two-phase system was maintained. Received: 2 October 1995/Received revision: 16 January 1996/Accepted: 22 January 1996  相似文献   

13.
A new technique to speed up the phase separation of aqueous two-phase systems is described. The technique is based on the addition of magnetically susceptible additives (ferrofluids or iron oxide particles). In a magnetic field such additives will induce a faster phase separation. In one approach, dextran-stabilized ferrofluid was added to an aqueous two-phase system containing polyethylene glycol and dextran. The ferrofluid was totally partitioned to the dextran phase. After mixing of the two-phase system, it was possible to reduce the separation time by a factor of 35 by applying a magnetic field to the system. Another approach involved the use of 1-micron iron oxide particles instead of ferrofluid. In this case also, the phase-separation time was reduced, by a factor of about 70, when the system was placed in a magnetic field. The addition of ferrofluid and/or iron oxide particles was shown to have no influence on enzyme partitioning or on enzyme activity. The partitioning of chloroplasts, on the other hand, was influenced unless the ferrofluid used had been treated with epoxysilane. A column system comprising 15 magnetic separation stages was constructed and was used for semicontinuous separation of enzyme mixtures.  相似文献   

14.
Hydrolysis of soluble starch by glucoamylase and β-amylase was investigated as a model reaction in an aqueous two-phase system consisting of polyethylene glycol (PEG) and dextran (DEX). Changes in glucose concentration observed in the batch reaction experiments with glucoamylase were almost identical for the aqueous two-phase and pure water systems, showing that the enzymic reactions investigated were not influenced by the presence of PEG and DEX. The partition of β-amylase into the DEX phase was insufficient compared to that of glucoamylase. Hence, the former enzyme was crosslinked with glutaraldehyde to increase its apparent molecular weight and, as a consequence, the partition coefficient, defined as the concentration ratio of the component partitioned into the PEG phase to that into the DEX phase, was decreased to 17% of that of the original enzyme. In the operation in which the enzyme and substrate are partitioned selectively into the DEX phase and allowed to react there while the product, thus transferring to the PEG phase, is recovered, the aqueous two-phase system with a smaller partition coefficient provided longer operational stability.  相似文献   

15.
During recombinant Escherichia coli fermentation with high expression levels, inclusion bodies are often formed. Aqueous two-phase systems have been used in the presence of urea for the initial recovery steps. To investigate phase behavior of such systems we determined phase diagrams of poly(ethylene glycol) (PEG)/sodium sulfate/urea/water and PEG/dextran T-500 (DEX)/urea/phosphate buffer/water at different concentrations of urea and different molecular weight of PEG. PEG/Na2SO4 aqueous two-phase systems could be obtained including up to 30% w/w urea at 25 degrees C and PEG/dextran T-500 up to 35% w/w urea. The binodial was displaced toward higher concentrations with increasing urea concentrations. The partition coefficient of urea was near unity. An unstable mutant of T4-lysozyme with an amino acid replacement in the core (V149T) was used to analyze the effect of phase components on the conformation of the enzyme. We showed that partitioning of tryptophan was not dependent on the concentration of urea in the phase system.  相似文献   

16.
Vesicular fragments of Golgi apparatus, smooth- and rough-surfaced microsomes from rat liver are differently partitioned in aqueous polymer two-phase systems consisting of dextran, polyethylene glycol, and sodium phosphate buffer. At a given polymer concentration, the amount of material partitioned in the top phase increases in the following order: rough microsomes less than smooth microsomes less than Golgi fragments. Counter-current distribution of Golgi fragments in the system consisting of 6.8% (w/w) dextran T500 and 6.8% polyethylene glycol 4,000 results in the separation of the fragments into three fractions; i.e. Fractions I, II, and III. NADH- and NADPH-cytochrome c reductase activities are detected almost exclusively in Fraction I, whereas the activities of galactosyltransferase, acid phosphatase, 5'-nucleotidase, and thiamine pyrophosphatase are maximal in Fraction III and minimal in Fraction I. The distribution of these enzymes suggests that Fraction I is similar to, though not identical with, microsomes, Fraction III resembles plasma membrane and lysosomes, and Fraction II is between the two. It is concluded that NADH- and NADPH-cytochrome c reductases are localized in a restricted region of the Golgi structure and that intra-Golgi differentiation seems to proceed in a discontinuous manner.  相似文献   

17.
Conidia of Penicillium brevi-compactum and Aspergillus fumigatus, sporangiospores of Rhizopus rhizopodiformis, spores of Streptomyces griseus, and bacterial cells of Bacillus subtilis were partitioned in two-phase systems consisting of dextran, polyethylene glycol, substituted positively charged sulfonylpolyethylene glycol, and water. At a pH of 2.8 in the system, the microorganisms showed 60 to 90% affinity for the upper, polyethylene glycol-rich phase, except for cells of B. subtilis, which were entirely located in the lower, dextran-rich phase. This partition behavior was used to separate microorganisms in aqueous suspensions of peat, wood fuel chip, and straw samples from organic dust impurities prior to total count by acridine orange staining and epifluorescence microscopy. Only one extraction of the interphase and lower phase was needed to separate approximately 98% of the conidia of Penicillium chrysogenum from a suspension containing peat dust.  相似文献   

18.
Conidia of Penicillium brevi-compactum and Aspergillus fumigatus, sporangiospores of Rhizopus rhizopodiformis, spores of Streptomyces griseus, and bacterial cells of Bacillus subtilis were partitioned in two-phase systems consisting of dextran, polyethylene glycol, substituted positively charged sulfonylpolyethylene glycol, and water. At a pH of 2.8 in the system, the microorganisms showed 60 to 90% affinity for the upper, polyethylene glycol-rich phase, except for cells of B. subtilis, which were entirely located in the lower, dextran-rich phase. This partition behavior was used to separate microorganisms in aqueous suspensions of peat, wood fuel chip, and straw samples from organic dust impurities prior to total count by acridine orange staining and epifluorescence microscopy. Only one extraction of the interphase and lower phase was needed to separate approximately 98% of the conidia of Penicillium chrysogenum from a suspension containing peat dust.  相似文献   

19.
The production of α-amylase (1,4-α-d-glucan glucanohydrolase, EC 3.2.1.1) by Bacillus subtilis has been studied in repeated batch fermentations in aqueous two-phase systems. In a phase system composed of PEG 600, 8% (w/w), PEG 3350, 5% (w/w)/Dextran T 500, 2% (w/w), 82% of the enzyme partitioned to the top phase. The enzyme concentration in the top phase reached 0.85–1.35 U ml?1 during the fermentations compared with 0.58 U ml?1 in the reference fermentation. In the phase system composed of PEG 3350, 9% (w/w)/Dextran T 500, 2% (w/w), 73% of the enzyme partitioned to the top phase. However, the enzyme concentration in this phase system reached only 0.35 U ml?1 in the top phase. The bacterial cells were microscopically observed to partition totally to the bottom phase in the aqueous two-phase system used. The results are discussed in relation to recirculation of cells by immobilizing to a solid matrix. Extraction of the product to the top phase and the effect of the phase polymers, especially PEG, on the production are also discussed.  相似文献   

20.
The study includes partitioning of proteins in aqueous two-phase systems consisting of the polymer dextran and the non-ionic surfactant C12E5 (pentaethylene glycol mono-n-dodecyl ether). In this system a micelle-enriched phase is in equilibrium with a polymer-enriched phase. Charges can be introduced into the micelles by the addition of charged surfactants. The charge of the mixed micelles is easily varied in sign and magnitude independently of pH, by the addition of different amounts of negatively charged surfactant, sodium dodecyl sulphate (SDS), or positively charged surfactant dodecyl trimethyl ammonium chloride (DoTAC). A series of water-soluble model proteins (BSA, β-lactoglobulin, myoglobin, cytochrome c and lysozyme), with different net charges at pH 7.1, have been partitioned in non-charged systems and in systems with charged mixed micelles or charged polymer (dextran sulphate). It is shown that partition coefficients for charged proteins in dextran-C12E5 systems can be strongly affected by addition of charged surfactants (SDS, DoTAC) or polymer (dextran sulphate) and that the effects are directly correlated to protein net charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号