首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The protein kinase-encoding genes RCK1 and RCK2 from Saccharomyces cerevisiae have been identified as suppressors of Schizosaccharomyces pombe cell cycle checkpoint mutations. Upon expression of these genes, radiation resistance is partially restored in S. pombe mutants with checkpoint deficiencies, but not in mutants with DNA repair defects. Some checkpoint mutants are sensitive to the DNA synthesis inhibitor hydroxyurea, and this sensitivity is also suppressed by RCK1 and RCK2. The degree of suppression can be modulated by varying expression levels. Expression of RCK1 or RCK2 in S. pombe causes cell elongation and decelerated growth. Cells expressing these genes have a single nucleus and a 2n DNA content. We conclude that these genes act in S. pombe to prolong the G2 phase of the cell cycle.  相似文献   

2.
Mutations in DNA repair/cell cycle checkpoint genes can lead to the development of cancer. The cloning of human homologs of yeast DNA repair/cell cycle checkpoint genes should yield candidates for human tumor suppressor genes as well as identifying potential targets for cancer therapy. TheSchizosaccharomyces pombegenesrad17, rad1,andhus1have been identified as playing roles in DNA repair and cell cycle checkpoint control pathways. We have cloned the cDNA for the human homolog ofS. pombe rad17,RAD17, which localizes to chromosomal location 5q13 by fluorescencein situhybridization and radiation hybrid mapping; the cDNA for the human homolog ofS. pombe rad1,RAD1, which maps to 5p14–p13.2; and the cDNA for the human homolog ofS. pombe hus1,HUS1, which maps to 7p13–p12. The human gene loci have previously been identified as regions containing tumor suppressor genes. In addition, we report the cloning of the cDNAs for genes related toS. pombe rad17, rad9, rad1,andhus1from mouse,Caenorhabditis elegans,andDrosophila melanogaster.These includeRad17andRad9fromD. melanogaster,hpr-17 and hpr-1 fromC. elegans,and RAD1 and HUS1 from mouse. The identification of homologs of theS. pomberad checkpoint genes from mammals, arthropods, and nematodes indicates that this cell cycle checkpoint pathway is conserved throughout eukaryotes.  相似文献   

3.
Summary The cdc2 cell cycle control gene of Schizosaccharomyces pombe has been identified on a 3 kb DNA fragment. The gene is unique in the genome and is located near to a 5S ribosomal RNA gene. When a plasmid containing DNA sequences adjacent to the cdc2 gene is transformed into certain temperature sensitive cdc2 mutants it allows colony formation at the restrictive temperature. This was shown to be due to the plasmid interacting with the cdc2 chromosomal region and picking up the temperature sensitive allele of the cdc2 gene. Over expression of these temperature sensitive alleles presumably leads to sufficient activity of the thermolabile product to allow normal cdc2 function. In this way two cdc2 alleles have been cloned.  相似文献   

4.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

5.
Summary The cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a 34 kDa phosphoprotein with serine/threonine protein kinase activity that acts as the key component in regulation of the eukaryotic cell cycle. We used a repressible promoter fused to the cdc2 cDNA to isolate conditionally dominant negative mutants of cdc2. One of these mutants, DL5, is described in this paper. Overexpression of the mutant protein in a wild-type cdc2 background is lethal and confers cell cycle arrest with a typical cdc phenotype. Sequencing of the mutant cdc2 gene revealed a single amino acid substitution in a region highly conserved in cdc2-like proteins. The mutant protein exhibits no protein kinase activity, but is able to bind a component(s) required for an active protein kinase complex and thereby prevents binding of this component(s) to the co-existing wild-type cdc2 protein. We also demonstrate that S. pombe p34cdc2 contains no phosphoserine.  相似文献   

6.
7.
We have cloned, sequenced and disrupted the checkpoint genes RAD17, RAD24 and MEC3 of Saccharomyces cerevisiae. Mec3p shows no strong similarity to other proteins currently in the database. Rad17p is similar to Rec1 from Ustilago maydis, a 3′ to 5′ DNA exonuclease/checkpoint protein, and the checkpoint protein Rad1p from Schizosaccharomyces pombe (as we previously reported). Rad24p shows sequence similarity to replication factor C (RFC) subunits, and the S. pombe Rad17p checkpoint protein, suggesting it has a role in DNA replication and/or repair. This hypothesis is supported by our genetic experiments which show that overexpression of RAD24 strongly reduces the growth rate of yeast strains that are defective in the DNA replication/repair proteins Rfc1p (cdc44), DNA polα (cdc17) and DNA polδ (cdc2) but has much weaker effects on cdc6, cdc9, cdc15 and CDC + strains. The idea that RAD24 overexpression induces DNA damage, perhaps by interfering with replication/repair complexes, is further supported by our observation that RAD24 overexpression increases mitotic chromosome recombination in CDC + strains. Although RAD17, RAD24 and MEC3 are not required for cell cycle arrest when S phase is inhibited by hydroxyurea (HU), they do contribute to the viability of yeast cells grown in the presence of HU, possibly because they are required for the repair of HU-induced DNA damage. In addition, all three are required for the rapid death of cdc13 rad9 mutants. All our data are consistent with models in which RAD17, RAD24 and MEC3 are coordinately required for the activity of one or more DNA repair pathways that link DNA damage to cell cycle arrest. Received: 8 April 1997 / Accepted: 10 May 1997  相似文献   

8.
Transposon mutagenesis allows for the discovery and characterization of genes by creating mutations that can be easily mapped and sequenced. Moreover, this method allows for a relatively unbiased approach to isolating genes of interest. Recently, a system of transposon based mutagenesis for Schizosaccharomyces pombe became available. This mutagenesis relies on Hermes, a DNA transposon from the house fly that readily integrates into the chromosomes of S. pombe. The Hermes system is distinct from the retrotransposons of S. pombe because it efficiently integrates into open reading frames. To mutagenize S. pombe, cells are transformed with a plasmid that contains a drug resistance marker flanked by the terminal inverted repeats of Hermes. The Hermes transposase expressed from a second plasmid excises the resistance marker with the inverted repeats and inserts this DNA into chromosomal sites. After S. pombe with these two plasmids grow 25 generations, approximately 2% of the cells contain insertions. Of the cells with insertions, 68% contain single integration events. The protocols listed here provide the detailed information necessary to mutagenize a strain of interest, screen for specific phenotypes, and sequence the positions of insertion.  相似文献   

9.
A number of DNA damage-inducible genes (DIN) have been identified in Saccharomyces cerevisiae. In the present study we describe isolation of a novel gene, Din7, the expression of which is induced by exposure of cells to UV light, MMS (methyl methanesulfonate) or HU (hydoxyurea). The DNA sequence of DIN7 was determined. By comparison of the predicted Din7 amino acid sequence with those in databases we found that it belongs to a family of proteins which includes S. cerevisiae Rad2 and its Schizosaccharomyces pombe and human homologs Rad13 and XPGC; S. cerevisiae Rad27 and its S. pombe homolog Rad2, and S. pombe Exo I. All these proteins are endowed with DNA nuclease activity and are known to play an important function in DNA repair. The strongest homology to Din7 was found with the Dhs1 protein of S.␣cerevisiae, the function of which is essentially unknown. The expression of the DIN7 gene was studied in detail using a DIN7-lacZ fusion integrated into a chromosome. We show that the expression level of DIN7 rises during meiosis at a time nearly coincident with commitment to recombination. No inducibility of DIN7 was found after treatment with DNA-damaging agents of cells bearing the rad53-21 mutation. Surprisingly, a high basal level of DIN7 expression was found in strains in which the DUN1 gene was inactivated by transposon insertion. We suggest that a form of Dun1 may be a negative regulator of the DIN7 gene expression. Received: 30 May 1996 / Accepted: 26 September 1996  相似文献   

10.
The DNA damage and stress response pathways interact to regulate cellular responses to genotoxins and environmental stresses. How these pathways interact in Schizosaccharomyces pombe is not well understood. We demonstrate that osmotic stress suppresses the DNA damage sensitivity of checkpoint mutants, and that this occurs through three distinct cell cycle delays. A delay in G2/M is dependent on Srk1. Progression through mitosis is halted by the Mad2‐dependent spindle checkpoint. Finally, cytokinesis is impaired by modulating Cdc25 expression. These three delays, imposed by osmotic stress, together compensate for the loss of checkpoint signalling.  相似文献   

11.
Summary Twenty seven recessive temperature sensitive mutants have been isolated in Schizosaccharomyces pombe which are unable to complete the cell division cycle at the restrictive temperature. These mutants define 14 unlinked genes which are involved in DNA synthesis, nuclear division and cell plate formation. The products from most of these genes complete their function just before the cell cycle event in which they are involved. Physiological characterisation of the mutants has shown that DNA synthesis and nuclear division form a cycle of mutually dependent events which can operate in the absence of cell plate formation. Cell plate formation itself is usually dependent upon the completion of nuclear division.  相似文献   

12.
TheSaccharomyces cerevisiae geneABC1 is required for the correct functioning of thebc 1 complex of the mitochondrial respiratory chain. By functional complementation of aS. cerevisiae abc1 mutant, we have cloned aSchizosaccharomyces pombe cDNA, whose predicted product is 50% identical to the Abc1 protein. Significant homology is also observed with bacterial, nematode, and even human amino acid sequences of unknown function, suggesting that the Abc1 protein is conserved through evolution. The cloned cDNA corresponds to a singleS. pombe geneabc1Sp, located on chromosome II, expression of which is not regulated by the carbon source. Inactivation of theabc1Sp gene by homologous gene replacement causes a respiratory deficiency which is efficiently rescued by the expression of theS. cerevisiae ABC1 gene. The inactivated strain shows a drastic decrease in thebc 1 complex activity, a decrease in cytochromeaa3 and a slow growth phenotype. To our knowledge, this is the first example of the inactivation of a respiratory gene inS. pombe. Our results highlight the fact thatS. pombe growth is highly dependent upon respiration, and thatS. pombe could represent a valuable model for studying nucleo-mitochondrial interactions in higher eukaryotes.  相似文献   

13.
14.
 New prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe were isolated from a bank of 700 mutants that were either temperature sensitive (ts-) or cold sensitive (cs-) for growth. The bank was screened by Northern blot analysis with probes complementary to S. pombe U6 small nuclear RNA (sn RNA), the gene for which has a splicesomal (mRNA-type) intron. We identified 12 prp mutants that accumulated the U6 snRNA precursor at the nonpermissive temperature. All such mutants were also found to have defects in an early step of TFIID pre-mRNA splicing at the nonpermissive temperature. Complementation analyses showed that seven of the mutants belong to six new complementation groups designated as prp8 and prp10-prp14, whereas the five other mutants were classified into the known complementation groups prp1, prp2 and prp3. Interestingly, some of the isolated prp mutants produced elongated cells at the nonpermissive temperature, which is a phenotype typical of cell division cycle (cdc) mutants. Based on these findings, we propose that some of the wild-type products from these prp + genes play important roles in the cellular processes of pre-mRNA splicing and cell cycle progression. Received: 15 April 1996/Accepted: 9 July 1996  相似文献   

15.
The checkpoint proteins, Rad9, Rad1, and Hus1 (9-1-1), form a complex which plays a central role in the DNA damage-induced checkpoint response. Previously, we demonstrated that Drosophila hus1 is essential for activation of the meiotic checkpoint elicited in double-strand DNA break (DSB) repair enzyme mutants. The hus1 mutant exhibits similar oocyte nuclear defects as those produced by mutations in these repair enzymes, suggesting that hus1 plays a role independent of its meiotic checkpoint activity. In this study, we further analyzed the function of hus1 during meiosis and discovered that the synaptonemal complex (SC) disassembles abnormally in hus1 mutants. Oocyte nuclear and SC defects of hus1 mutants can be suppressed by blocking the formation of DSBs, implying that the hus1 oocyte nuclear defects depend upon DSBs. Interestingly, eliminating checkpoint activity through mutations in DmChk2 but not mei-41 suppress the oocyte nucleus and SC defects of hus1, suggesting that these processes are dependent upon DmChk2 checkpoint activity. Moreover, we showed that in hus1, DSBs that form during meiosis are not processed efficiently, and that this defect is not suppressed by a mutation in DmChk2. We found a genetic interaction between hus1 and the Drosophila brca2 homologue, which was shown to participate in DNA repair during meiosis. Together, our results imply that hus1 is required for repair of DSBs during meiotic recombination.  相似文献   

16.
Summary The products of 11 switching (swi) genes are required for efficient mating-type (MT) switching in homothallic (h 90) strains of Schizosaccharomyces pombe. The MT region of h 90 comprises three cassette genes: the expression site mat1: 1 and two silent loci, mat2: 2 and mat3: 3. Besides reducing MT switching, the swi6 mutation leads to deletions in the MT region caused by intrachromosomal cross-overs between two paired cassettes. These deletions only arise if DNA double-strand breaks are present at mat1: 1, which initiate MT switching. Furthermore, swi6 allows meiotic recombination in the K region, a region of 16 kb between mat2: 2 and mat3: 3; in wild-type strains no recombination occurs in K. swi6 also allows the simultaneous expression of two different cassettes in the same haploid cell. Thus swi6 may have an influence on the general chromatin structure in the MT region.  相似文献   

17.
Cell cycle control in the fission yeastSchizosaccharomyces pombe involves interplay amongst a number of regulatory molecules, including thecdc2, cdc13, cdc25, weel, andmik1 gene products. Cdc2, Cdc13, and Cdc25 act as positive regulators of cell cycle progression at the G2/M boundary, while Wee1 and Mik1 play a negative regulatory role. Here, we have screened for suppressors of the lethal premature entry into mitosis, termed mitotic catastrophe, which results from simultaneous loss of function of both Wee1 and Mik1. Through such a screen, we hoped to identify additional components of the cell cycle regulatory network, and/or G2/M-specific substrates of Cdc2. Although we did not identify such molecules, we isolated a number of alleles of bothcdc2 andcdc13, including a novel wee allele ofcdc2, cdc2-5w. Here, we characterizecdc2-5w and two alleles ofcdc13, which have implications for the understanding of details of the interactions amongst Cdc2, Cdc13, and Wee1.  相似文献   

18.
The cdc6 mutants of Schizosaccharomyces pombe have been classified as being defective in progression through the G2 phase of the cell cycle. We cloned an S. pombe gene that could complement the temperature-sensitive growth of the cdc6-23 mutant. Unexpectedly, the cloned gene was allelic to pol3, which encodes the catalytic subunit of DNA polymerase δ. Integration mapping confirmed that cdc6 and pol3 are identical. The cdc6-23 mutant carries one amino acid substitution in the conserved N3 region of Pol3. Received: 17 October 1996 / Accepted: 19 November 1996  相似文献   

19.
Thecdc2 + gene product (p34cdc2) is a protein kinase that regulates entry into mitosis in all eukaryotic cells. The role that p34cdc2 plays in the cell cycle has been extensively investigated in a number of organisms, including the fission yeastSchizosaccharomyces pombe. To study the degree of functional conservation among evolutionarily distant p34cdc2 proteins, we have constructed aS. pombe strain in which the yeastcdc2 + gene has been replaced by itsDrosophila homologue CDC2Dm (theCDC2Dm strain). ThisCDC2Dm S. pombe strain is viable, capable of mating and producing four viable meiotic products, indicating that the fly p34CDC2Dm recognizes all the essentialS. pombe cdc2 + substrates, and that it is recognized by cyclin partners and other elements required for its activity. The p34CDC2Dm protein yields a lethal phenotype in combination with the mutant B-type cyclin p56cdc13-117, suggesting that thisS. pombe cyclin might interact less efficiently with theDrosophila protein than with its native p34cdc2 counterpart. ThisCDC2Dm strain also responds to nutritional starvation and to incomplete DNA synthesis, indicating that proteins involved in these signal transduction pathways, interact properly with p34CDC2Dm (and/or that p34cdc2-independent pathways are used). TheCDC2Dm gene produces a ‘wee’ phenotype, and it is largely insensitive to the action of theS. pombe weel + mitotic inhibitor, suggesting thatDrosophila weel + homologue might not be functionally conserved. ThisCDC2Dm strain is hypersensitive to UV irradiation, to the same degree asweel-deficient mutants. A strain which co-expresses theDrosophila and yeastcdc2+ genes shows a dominantwee phenotype, but displays a wild-type sensitivity to UV irradiation, suggesting that p34cdc2 triggers mitosis and influences the UV sensitivity by independent mechanisms. Communicated by B. J. Kilbey  相似文献   

20.
Summary We have generated a bank of temperature-sensitive (ts) Schizosaccharomyces pombe mutant strains. About 150 of these mutants were transformed with a ura4 gene containing an artificial intron. We screened these is mutants for mutants deficient in splicing of the ura4 intron. With this approach three mutants were isolated which have a general defect in the splicing process. Two of these mutants fall into the prp1 complementation group and one defines a new complementation group, prp4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号