首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, was studied under free field stimulation conditions with 3 temporally patterned trains of sound pulses which differed in pulse repetition rate and duration. The directional sensitivity curves of 92 neurons studied can be described as hemifield, directionally-selective, or non-directional according to the variation in the number of impulses with pulse train direction. When these neurons were stimulated with all 3 pulse trains, the directional sensitivity curves of 50 neurons was unchanged but that of the other 42 neurons changed from one type into another. When these pulse trains were delivered at high pulse repetition rate and short pulse duration, they significantly sharpened the directional sensitivity of two thirds of the neurons examined by reducing the angular range and increasing the slope of their impulse directional sensitivity curves. These pulse trains also sharpened the slope of the threshold directional sensitivity curves of 25 neurons studied. However, when directional sensitivity of collicular neurons was determined with pulse trains that differed only in pulse repetition rate or in pulse duration, significant sharpening of directional sensitivity was rarely observed in all experimental conditions tested. Possible mechanisms underlying these findings are discussed.  相似文献   

2.
This study examined the role of GABAergic inhibition in shaping directional selectivity of neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. When determined with temporally patterned pulse trains at different pulse repetition rates, 93 inferior colliculus neurons displayed three types of directional selectivity curves. A directionally selective curve always showed a maximum to a certain azimuthal angle (the best angle). A hemifield curve showed a maximum to a range of contralateral azimuthal angles. A non-directional curve did not show a maximum to any particular azimuthal angles. Directional selectivity curves of 42% neurons changed from hemifield or non-directional to directionally selective and the best angles of 16-21% neurons shifted toward the midline with increasing pulse repetition rate of pulse trains. Directional selectivity curves of most (74%) neurons that discharged impulses to each pulse of a pulse train also became sharper with increasing pulse repetition rate of pulse trains. Bicuculline application produced more pronounced broadening of directional selective curves of inferior colliculus neurons at higher than at lower pulse repetition rates. As a result, pulse repetition rate-dependent directional selectivity of inferior colliculus neurons was abolished. Possible mechanisms and biological significance of these findings are discussed.  相似文献   

3.
This study examined the effect of temporally patterned pulse trains on intensity and frequency sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. Intensity sensitivity of inferior collicular neurons was expressed by the dynamic range and slope of rate-intensity functions. Inferior collicular neurons with non-monotonic rate-intensity functions have smaller dynamic ranges and larger slopes than neurons with monotonic or saturated rate-intensity functions. Intensity sensitivity of all inferior collicular neurons improved by increasing the number of non-monotonic rate-intensity functions when the pulse repetition rate of pulse trains increased from 10 to 30 pulses per second. Intensity sensitivity of 43% inferior collicular neurons further improved when the pulse repetition rate of pulse trains increased still from 30 to 90 pulses per second. Frequency sensitivity of inferior collicular neurons was expressed by the Q10, Q20, and Q30 values of threshold frequency tuning curves and bandwidths of isointensity frequency tuning curves. Threshold frequency tuning curves of all inferior collicular neurons were V-shape and mirror-images of their counterpart isointensity frequency tuning curves. The Q10, Q20, and Q30 values of threshold frequency tuning curves of all inferior collicular neurons progressively increased and bandwidths of isointensity frequency tuning curves decreased with increasing pulse repetition rate in temporally patterned pulse trains. Biological relevance of these findings to bat echolocation is discussed.  相似文献   

4.
Responses to frequency-modulated stimuli of 118 inferior collicular neurons were compared with quantitative characteristics of the frequency — threshold curves and lateral inhibitory zones during time-varying two-tone stimulation in anesthetized albino rats. In one third of neurons high sensitivity to the direction of frequency modulation does not correspond to their spatial characteristics (the shape, width, and arrangement of the lateral inhibitory zones relative to the frequency — threshold curve). The specificity of response of these neurons to a particular direction of frequency modulation is evidently based on differences in the temporal course of inhibition evoked by high-frequency and low-frequency tones.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 603–607, November–December, 1975.  相似文献   

5.
实验分别在出生后4周龄的幼年和成年鲁氏菊头蝠(Rhinolophusrouxi)上进行。使用移动声刺激装置,高频喇叭可在动物头部前方水平方向180度、垂直方向60度的范围内移动。玻璃微电极记录单个神经元的听反应。实验考察了幼年和成年动物下丘神经元的听空间特性,共观察了301个神经元,其中幼年动物148个,成年动物153个。结果表明,4周龄的幼年动物下丘听神经元已表现出方向敏感性,即每个听神经元均有一个特定的最佳反应中心和反应域。但神经元听反应中心在听空间的分布相当弥散,大多数位于对侧水平方向20—80度、垂直方向上下15度范围内。而成年动物听神经元反应中心的分布则相当集中,局限地分布于对侧水平方向28-50度,垂直方向0—10度范围内,两者构成明显差异。  相似文献   

6.
This study examined if corticofugal modulation of subcortical frequency-tuning curves varied with sound direction. Both excitatory and inhibitory frequency tuning curves of inferior collicular neurons of the big brown bat, Eptesicus fuscus were plotted before and during electrical stimulation in the auditory cortex at two sound directions (contra-40 degrees and ipsi-40 degrees). Most collicular neurons had broader excitatory frequency-tuning curves at contra-40 degrees but had broader inhibitory frequency-tuning curves at ipsi-40 degrees. Cortical electrical stimulation changed the excitatory minimum thresholds of most collicular neurons at a greater degree at ipsi-40 degrees than at contra-40 degrees. However, cortical electrical stimulation produced a greater increase in the sharpness of excitatory frequency-tuning curves of most corticofugally inhibited collicular neurons at contra-40 degrees but produced a greater decrease in the sharpness of excitatory frequency-tuning curves of most corticofugally facilitated collicular neurons at ipsi-40 degrees. Cortical electrical stimulation also produced a greater change in the sharpness of inhibitory frequency-tuning curves of most corticofugally inhibited collicular neurons at contra-40 degrees than at ipsi-40 degrees. Possible mechanisms for this direction-dependent corticofugal modulation of frequency-tuning curves of collicular neurons are discussed.  相似文献   

7.
GABAergic inhibition shapes many auditory response properties of neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. This study examined the role of GABAergic inhibition on direction-dependent rate-intensity functions of bat inferior collicular neurons. When plotted at three sound directions (60 degrees contralateral, 0 degrees and 60 degrees ipsilateral relative to recording site), most collicular neurons had nonmonotonic and saturated rate-intensity functions at 60 degrees contralateral and 0 degrees but had monotonic rate-intensity functions at 60 degrees ipsilateral. The dynamic range of rate-intensity functions of majority (>90%) of collicular neurons significantly decreased as the sound direction changed from 60 degrees contralateral to 60 degrees ipsilateral. Bicuculline application increased or decreased the dynamic range of IC neurons in different degrees with sound direction and abolished direction-dependent intensity sensitivity of these IC neurons. Possible mechanisms for these observations are discussed.  相似文献   

8.
During hunting, bats of suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes with their highly developed auditory system to extract the information about insects or obstacles. These bats progressively shorten the duration, lower the frequency, decrease the intensity and increase the repetition rate of emitted pulses as they search, approach, and finally intercept insects or negotiate obstacles. This dynamic variation in multiple parameters of emitted pulses predicts that analysis of an echo parameter by the bat would be inevitably affected by other co-varying echo parameters. The progressive increase in the pulse repetition rate throughout the entire course of hunting would presumably enable the bat to extract maximal information from the increasing number of echoes about the rapid changes in the target or obstacle position for successful hunting. However, the increase in pulse repetition rate may make it difficult to produce intense short pulse at high repetition rate at the end of long-held breath. The increase in pulse repetition rate may also make it difficult to produce high frequency pulse due to the inability of the bat laryngeal muscles to reach its full extent of each contraction and relaxation cycle at a high repetition rate. In addition, the increase in pulse repetition rate increases the minimum threshold (i.e. decrease auditory sensitivity) and the response latency of auditory neurons. In spite of these seemingly physiological disadvantages in pulse emission and auditory sensitivity, these bats do progressively increase pulse repetition rate throughout a target approaching sequence. Then, what is the adaptive value of increasing pulse repetition rate during echolocation? What are the underlying mechanisms for obtaining maximal information about the target features during increasing pulse repetition rate? This article reviews the electrophysiological studies of the effect of pulse repetition rate on multiple-parametric selectivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus using single repetitive sound pulses and temporally patterned trains of sound pulses. These studies show that increasing pulse repetition rate improves multiple-parametric selectivity of inferior collicular neurons. Conceivably, this improvement of multiple-parametric selectivity of collicular neurons with increasing pulse repetition rate may serve as the underlying mechanisms for obtaining maximal information about the prey features for successful hunting by bats.  相似文献   

9.
Bicuculline对小鼠中脑下丘听神经元   总被引:4,自引:0,他引:4  
采用微电泳技术考察了GABAA受体拮抗剂荷包牡丹碱(bicuculline),对小鼠中脑下丘听神经元强度-放电率曲线、频率调谐曲线和听空间反应域的影响。结果表明,微电泳bicuculline使听神经元的放电率显著提高,多数神经元的强度-放电率曲线变为单调型;听神经元频率调谐曲线加宽,并且对曲线上部的作用更加明显;听神经元的听空间反应域增大,方向敏感性降低。实验结果提示了GABA能抑制在下丘听信息处理中的重要作用。  相似文献   

10.
Under free-field stimulation conditions, corticofugal regulation of auditory sensitivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus, was studied by blocking activities of auditory cortical neurons with Lidocaine or by electrical stimulation in auditory cortical neuron recording sites. The corticocollicular pathway regulated the number of impulses, the auditory spatial response areas and the frequency-tuning curves of inferior colliculus neurons through facilitation or inhibition. Corticofugal regulation was most effective at low sound intensity and was dependent upon the time interval between acoustic and electrical stimuli. At optimal interstimulus intervals, inferior colliculus neurons had the smallest number of impulses and the longest response latency during corticofugal inhibition. The opposite effects were observed during corticofugal facilitation. Corticofugal inhibitory latency was longer than corticofugal facilitatory latency. Iontophoretic application of γ-aminobutyric acid and bicuculline to inferior colliculus recording sites produced effects similar to what were observed during corticofugal inhibition and facilitation. We suggest that corticofugal regulation of central auditory sensitivity can provide an animal with a mechanism to regulate acoustic signal processing in the ascending auditory pathway. Accepted: 15 July 1998  相似文献   

11.
单耳堵塞对蝙蝠下丘GABA阳性反应神经元的影响   总被引:8,自引:0,他引:8  
已有的研究表明,单耳堵塞可以使中脑下丘神经元的听空间反应特性改变,而神经元听空间特性的形成与中枢中的周边抑制有关,是神经元的兴奋性中心区域与抑制性周边区域相互作用的结果[1]。γ-氨基丁酸(Gamma-aminobytricacid,GABA)作为中...  相似文献   

12.
应用常规电生理学技术,研究小鼠听皮层对中脑下丘神经元方位敏感性的下行调制.实验记录了198个下丘神经元的听反应,这些神经元的最佳方位角大多数(84.8%)位于听空间对侧20°~50°范围内.根据神经元的方位敏感曲线特征,将这些神经元分为方位选择型,半场型、多峰型和全向型四种调谐模式.电刺激听皮层对绝大多数下丘神经元方位角的范围产生易化(42.0%)或抑制(45.0%)效应,并使59.3%的神经元的最佳方位角发生了转移.结果提示,小鼠下丘神经元具有明显的方位敏感性,听皮层对下丘神经元听觉方位信息处理具有下行调制作用.此研究结果为深入研究中枢听觉信息处理的离皮质调控机制提供了重要实验资料.  相似文献   

13.
Previous studies have shown that inferior collicular neurons of the big brown bat, Eptesicus fuscus, serve as short-, band-, long- and all-pass filters for sound durations. Neurons with band-, short- and long-pass filtering characteristics discharged maximally to a specific sound duration or a range of sound durations. In contrast, neurons with all-pass filtering characteristics do not have duration selectivity. To determine if duration-tuning characteristics of collicular neurons were tolerant to changes in sound intensity, we examined the duration-tuning characteristics of collicular neurons using a wide range of sound intensities. Duration-tuning characteristics examined included the type, bandwidth and slope of duration-tuning curves. Sound intensity delivered within 20 dB of minimum threshold did not affect duration-tuning characteristics of all collicular neurons studied. Sound intensities at still higher levels did not affect the tuning characteristics of two-thirds of collicular neurons but decreased the duration selectivity and changed the duration-tuning curves of the remaining one-third of neurons from one type to another. However, these two groups of duration-tuning collicular neurons were not separately organized inside the inferior colliculus. The biological relevance of these findings to bat echolocation is discussed.  相似文献   

14.
电刺激大马蹄蝠听皮层对下丘神经元听觉敏感性的影响   总被引:5,自引:2,他引:3  
实验在12只大马蹄蝠上进行。用常规电生理学方法研究了电刺激听皮层对下丘212个神经元的听反应的影响,结果表明,有32个神经元的听反应被抑制,19个神经元的听反应褐易化。  相似文献   

15.
The inferior colliculus and auditory cortex of the pallid bat contain a large percentage of neurons that are highly selective for the direction and rate of the downward frequency modulated (FM) sweep of the bat’s echolocation pulse. Approximately 25% of neurons tuned to the echolocation pulse respond exclusively to downward FM sweeps. This review focuses on the finding that this selectivity is generated by multiple mechanisms that may act alone or in concert. In the inferior colliculus, selectivity for sweep rate is shaped by at least three mechanisms: shortpass or bandpass tuning for signal duration, delayed high-frequency inhibition that prevents responses to slow sweep rates, and asymmetrical facilitation that occurs only when two tones are presented at appropriate delays. When acting alone, the three mechanisms can produce essentially identical rate selectivity. Direction selectivity can be produced by two mechanisms: an early low-frequency inhibition that prevents responses to upward sweeps, and the same asymmetrical two-tone inhibition that shapes rate tuning. All mechanisms except duration tuning are also present in the auditory cortex. Discussion centers on whether these mechanisms are redundant or complementary.  相似文献   

16.
 This study examines the effect of temporally patterned pulse trains on duration tuning characteristics of inferior collicular neurons of the big brown bat, Eptesicus fuscus, under free-field stimulation conditions. Using a 50% difference between maximal and minimal responses as a criterion, the duration tuning characteristics of inferior collicular neurons determined with pulse trains of different pulse durations are described as band-pass, long-pass, short-pass, and all-pass. Each band-pass neuron discharged maximally to a specific pulse duration that was at least 50% larger than the neuron's responses to a long- and a short-duration pulse. In contrast, each long- or short-pass neuron discharged maximally to a range of long- or short-duration pulses that were at least 50% larger than the minimal responses. The number of impulses of an all-pass neuron never differed by more than 50%. When pulse trains were delivered at different pulse repetition rates, the number of short-pass and band-pass neurons progressively increased with increasing pulse repetition rates. The slope of the duration tuning curves also became sharper when determined with pulse trains at high pulse repetition rates. Possible mechanisms underlying these findings are discussed. Accepted: 25 August 1999  相似文献   

17.
采用超声监测仪录制超声信号和细胞外电生理记录下丘神经元的频率调谐曲线(frequency tuningcurqes,FTCs)的方法,探讨了大蹄蝠(Hipposideros armiger)回声定位信号与下丘(inferior colliculus,IC)神经元频率调谐之间的相关性.结果发现,大蹄蝠回声定位叫声为恒频-调频(consrant frequency-frequenevmodulated,CF-FM)信号,一般含有2-3个谐波,第二谐波为其主频,cF成分频率(Mean±SD,n=18)依次为:(33.3 4±0.2)、(66.5±0.3)、(99.4 4±0.5)kHz;电生理实验共获得72个神经元的频率调谐曲线,Q10-dB值的范围是0.5-95.4(9.2±14.6,rg=72),最佳频率(best frequency,BF)在回声定位主频附近的神经元具有尖锐的频率调谐特性.结果表明,大蹄蝠回声定位信号与下丘神经元频率调谐存在相关性,表现为最佳频率在回声定位信号主频附近的神经元频率调谐曲线的Q10-dB值较大,具有很强的频率分析能力.  相似文献   

18.
Insectivorous big brown bats, Eptesicus fuscus, progressively increase the pulse repetition rate (PRR) throughout the course of hunting. While increasing PRR conceivably facilitates bats to extract information about the targets, it also inevitably affects sensitivity of their auditory neurons to pulse parameters. The present study examined the effect of increasing PRR on duration selectivity of this bat's inferior collicular (IC) neurons by comparing their impulse-duration functions determined at different PRRs. Impulse-duration functions plotted with the number of impulses in response to single pulses against pulse duration at different PRRs were described as short-pass, band-pass, long-pass, and all-pass. Short- or long-pass neurons discharged maximally to a range of short or long pulse durations. Band-pass neurons discharged maximally to one pulse duration. These three types of IC neurons were called duration tuned neurons. All-pass neurons were not duration tuned because they did not discharge maximally to any pulse duration. Increasing PRR improved duration selectivity of IC neurons by (1) increasing the number of duration tuned neurons; (2) decreasing the critical duration concomitant with increasing slope of the impulse-duration function; and (3) decreasing the 50% duration range of the impulse-duration function. This improved duration selectivity with PRR may potentially facilitate prey capture by bats.  相似文献   

19.
When insectivorous bats such as Eptesicus fuscus emit ultrasonic signals and analyze the returning echoes to hunt insects, duration selectivity of auditory neurons plays an important role in echo recognition. The success of prey capture indicates that they can effectively encode progressively shortened echo duration throughout the hunting process. The present study examines the echo duration selectivity of neurons in the central nucleus of the bat inferior colliculus (IC) under stimulation conditions of single pulses and pulse–echo (P–E) pairs. This study also examines the role of gamma-aminobutyric acid (GABA)ergic inhibition in shaping echo duration selectivity of IC neurons. The data obtained show that the echo duration selectivity of IC neurons is sharper when determined with P–E pairs than with single pulses. Echo duration selectivity also sharpens with shortening of pulse duration and P–E gap. Bicuculline application decreases and GABA application increases echo duration selectivity of IC neurons. The degree of change in echo duration selectivity progressively increases with shortening of pulse duration and P–E gap during bicuculline application while the opposite is observed during the GABA application. These data indicate that the GABAergic inhibition contributes to sharpening of echo duration selectivity of IC neurons and facilitates echo recognition by bats throughout different phases of hunting.  相似文献   

20.
HX Mei  L Cheng  J Tang  ZY Fu  X Wang  PH Jen  QC Chen 《PloS one》2012,7(7):e41311
In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation. Focal electrical stimulation of one (ipsilateral) IC produces widespread inhibition (61.6%) and focused facilitation (9.1%) of responses of neurons in the other (contralateral) IC, while 29.3% of the neurons were not affected. Bilateral collicular interaction produces a decrease in the response magnitude and an increase in the response latency of inhibited IC neurons but produces opposite effects on the response of facilitated IC neurons. These two groups of neurons are not separately located and are tonotopically organized within the IC. The modulation effect is most effective at low sound level and is dependent upon the interval between the acoustic and electric stimuli. The focal electrical stimulation of the ipsilateral IC compresses or expands the rate-level functions of contralateral IC neurons. The focal electrical stimulation also produces a shift in the minimum threshold and dynamic range of contralateral IC neurons for as long as 150 minutes. The degree of bilateral collicular interaction is dependent upon the difference in the best frequency between the electrically stimulated IC neurons and modulated IC neurons. These data suggest that bilateral collicular interaction mainly changes the ratio between excitation and inhibition during signal processing so as to sharpen the amplitude sensitivity of IC neurons. Bilateral interaction may be also involved in acoustic-experience-dependent plasticity in the IC. Three possible neural pathways underlying the bilateral collicular interaction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号