首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During fertilization in mice, acrosome-intact sperm bind via plasma membrane overlying their head to a glycoprotein, called ZP3, present in the egg extracellular coat or zona pellucida. Bound sperm then undergo the acrosome reaction, which results in exposure of inner acrosomal membrane, penetrate through the zona pellucida, and fuse with egg plasma membrane. Thus, in the normal course of events, acrosome-reacted sperm must remain bound to eggs, despite loss of plasma membrane from the anterior region of the head and exposure of inner acrosomal membrane. Here, we examined maintenance of binding of sperm to the zona pellucida following the acrosome reaction. We found that polyclonal antisera and monoclonal antibodies directed against ZP2, another zona pellucida glycoprotein, did not affect initial binding of sperm to eggs, but inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. On the other hand, polyclonal antisera and monoclonal antibodies directed against ZP3 did not affect either initial binding of acrosome-intact sperm to eggs or maintenance of binding following the acrosome reaction. We also found that soybean trypsin inhibitor, a protein reported to prevent binding of mouse sperm to eggs, did not affect initial binding of sperm to eggs, but, like antibodies directed against ZP2, inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. These and other observations suggest that ZP2 serves as a secondary receptor for sperm during the fertilization process in mice and that maintenance of binding of acrosome-reacted sperm to eggs may involve a sperm, trypsin-like proteinase.  相似文献   

2.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

3.
We have previously defined distinct localizations of antigens on the surface of the guinea pig sperm using monoclonal antibodies. In the present study we have demonstrated that these antigen localizations are dynamic and can be altered during changes in the functional state of the sperm. Before the sperm is capable of fertilizing the egg, it must undergo capacitation and an exocytic event, the acrosome reaction. Prior to capacitation, the antigen recognized by the monoclonal antibody, PT-1, was restricted to the posterior tail region (principle piece and end piece). After incubation in capacitating media at 37 degrees C for 1 h, 100% of the sperm population showed migration of the PT-1 antigen onto the anterior tail. This redistribution of surface antigen resulted from a migration of the surface molecules originally present on the posterior tail. It did not occur in the presence of metabolic poisons or when tail-beating was prevented. It was temperature-dependent, and did not require exogenous Ca2+. Since the PT-1 antigen is freely diffusing on the posterior tail before migration, the mechanism of redistribution could involve the alteration of a presumptive membrane barrier. In addition, we observed the redistribution of a second surface antigen after the acrosome reaction. The antigen recognized by the monoclonal antibody, PH-20, was localized exclusively in the posterior head region of acrosome-intact sperm. Within 7-10 min of induction of the acrosome reaction with Ca2+ and A23187, 90-100% of the acrosome-reacted sperm population no longer demonstrated binding of the PH-20 antibody on the posterior head, but showed binding instead on the inner acrosomal membrane. This redistribution of the PH-20 antigen also resulted from the migration of pre-existing surface molecules, but did not appear to require energy. The migration of PH-20 antigen was a selective process; other antigens localized to the posterior head region did not leave the posterior head after the acrosome reaction. These rearrangements of cell surface molecules may act to regulate cell surface function during fertilization.  相似文献   

4.
ZP3, a glycoprotein of the murine zona pellucida, functions both to bind acrosome intact sperm and to induce the acrosome reaction. Solubilized whole zonae as well as purified ZP3 are able to induce acrosome reactions in capacitated sperm. Pronase digests of whole zonae yield glycopeptides that bind to sperm but are unable to induce acrosome reactions. However, immunoaggregation of these glycopeptides results in the exocytosis of the acrosome in the majority of treated sperm. The data suggest that ZP3 triggers the acrosome reaction by the aggregation of ZP3 binding sites on the sperm head. If aggregation of ZP3 binding sites is important in the induction of the acrosome reaction, then it may be possible to induce the acrosome reaction in the absence of zona by immunoaggregation of the sites. This presentation deals with the immunoaggregation of a proteinase inhibitor of seminal vesicle origin (SVI) that binds to a site on the sperm head known to participate in zona binding. We show that capacitated murine sperm, pretreated with the SVI, will acrosome react, as determined by Coomassie brilliant blue staining, when incubated with rabbit antiinhibitor antiserum (anti-SVI). The percentage of SVI-treated sperm displaying an acrosome reaction is dependent on the concentration of the immune serum. Sperm stain positive for intact acrosomes when anti-SVI Fab fragments or normal rabbit serum is substituted for the immune serum. However, when capacitated sperm, treated with both SVI and anti-SVI Fab fragments, are incubated with goat antirabbit IgG, the majority of sperm acrosome react. The data suggest that the aggregation of SVI bound to the sperm surface, in the absence of zona glycoproteins, is sufficient to induce the acrosome reaction.  相似文献   

5.
Enzymatic dissection of the functions of the mouse egg's receptor for sperm   总被引:13,自引:0,他引:13  
During the course of sperm-egg interaction in mice, zona pellucida glycoprotein ZP3 (approximately equal to 80 kDa) serves as both receptor for sperm (J. D. Bleil and P. M. Wassarman, 1980c, Cell 20, 873-882) and inducer of the acrosome reaction (J. D. Bleil and P. M. Wassarman, 1983, Dev. Biol. 95, 317-324). In this investigation, small ZP3 glycopeptides (approximately equal to 1.5-6 kDa), obtained by extensive digestion of the purified glycoprotein with insoluble Pronase, were assayed for both sperm receptor and acrosome reaction-inducing activities. While ZP3 glycopeptides were virtually as effective as intact ZP3 in inhibiting binding of sperm to eggs in vitro ("receptor activity"), unlike intact ZP3, they failed to induce sperm to undergo the acrosome reaction. The latter was determined by indirect immunofluorescence using a monoclonal antibody directed against the acrosomal cap region of sperm. These results suggest that the sperm receptor activity of ZP3 is dependent only on its carbohydrate components, whereas acrosome reaction-inducing activity is dependent on the polypeptide chain of ZP3 as well.  相似文献   

6.
L Leyton  P Saling 《Cell》1989,57(7):1123-1130
In the mouse, the zona pellucida (ZP) glycoprotein ZP3 both binds intact sperm and induces acrosomal exocytosis. The subsequent signaling pathway(s) is still uncertain, but Gi-like proteins have been implicated. By analogy with other signal transduction mechanisms, we examined anti-phosphotyrosine antibody reactivity in mouse sperm. Antibodies reacted with three proteins of 52, 75, and 95 kd. Indirect immunofluorescence localized reactivity to the acrosomal region of the sperm head. The 52 kd and 75 kd phosphoproteins are detected only in capacitated sperm, whereas the 95 kd protein is detected in both fresh and capacitated sperm. For the 95 kd protein, the level of immunoreactivity is not related to sperm motility but is enhanced by both capacitation and sperm interaction with solubilized ZP proteins. In addition, binding of radiolabeled whole ZP or purified ZP3 to blots of separated sperm proteins identified two ZP binding proteins of 95 kd and 42 kd. 95 kd sperm proteins that bind to ZP3 also react with anti-phosphotyrosine antibodies (in a ZP concentration-dependent manner), supporting the idea that the same 95 kd sperm protein serves as a ZP3 receptor and as a tyrosine kinase substrate. These findings and our evidence on acrosome reaction triggering via sperm receptor aggregation suggest that a 95 kd protein in the sperm plasma membrane is aggregated by ZP3, which stimulates tyrosine kinase activity leading to acrosomal exocytosis.  相似文献   

7.
ESA152 is a highly hydrophobic 18 kDa sialoglycoprotein, which becomes expressed on ram sperm in the proximal cauda epididymis. ESA 152 is expressed on all regions of the sperm surface, most strongly on the posterior region of the head, most weakly on the anterior region of the head. In this paper, we show that induction of the acrosome reaction with Ca2+ ionophore causes ESA152 to be redistributed from the posterior to the anterior region of the head plasma membrane. Cross-linking ESA152 with bivalent antibody causes similar redistribution and induces the acrosome reaction. Induction of the acrosome reaction with ESA152 antibody requires Ca2+ but is insensitive to (10 ng/ml) pertussis toxin.  相似文献   

8.
Zona pellucida (ZP)-induced acrosome reaction in sperm is a required step for mammalian fertilization. However, the precise mechanism of the acrosome reaction remains unclear. We previously reported that PLCdelta4 is involved in the ZP-induced acrosome reaction in mouse sperm. Here we have monitored Ca2+ responses in single sperm, and we report that the [Ca2+]i increase in response to ZP, which is essential for driving the acrosome reaction in vivo, is absent in PLCdelta4-/- sperm. Progesterone, another physiological inducer of the acrosome reaction, failed to induce sustained [Ca2+]i increases in PLCdelta4-/- sperm, and consequently the acrosome reaction was partially inhibited. In addition, we observed oscillatory [Ca2+]i increases in wild-type sperm in response to these acrosome inducers. Calcium imaging studies revealed that the [Ca2+]i increases induced by exposure to ZP and progesterone started at different sites within the sperm head, indicating that these agonists induce the acrosome reaction via different Ca2+ mechanisms. Furthermore, store-operated channel (SOC) activity was severely impaired in PLCdelta4-/- sperm. These results indicate that PLCdelta4 is an important enzyme for intracellular [Ca2+]i mobilization in the ZP-induced acrosome reaction and for sustained [Ca2+]i increases through SOC induced by ZP and progesterone in sperm.  相似文献   

9.
A murine monoclonal antibody, M42 mAb, directed against 200/220 Kd protein of mouse sperm, has been employed to study the molecular events of gamete interaction. We have reported previously that M42 mAb blocks mouse fertilization in a zona-dependent manner; the reagent specifically inhibits physiologically induced (zonae), but not pharmacologically induced (A23187), acrosome reactions in mouse sperm. Using solubilized mouse zonae pellucidae and purified ZP3, we demonstrate that M42 mAb inhibits acrosome reactions (ARs) induced by ZP3 to the same extent as those induced by total zonae. We have also studied AR inhibition using the fluorescent antibiotic chlortetracycline (CTC), which permits visualization of three different acrosomal patterns during the AR. In the presence of M42 IgG, greater than 70% of capacitated sperm treated with zonae are arrested in the acrosome-intact state (B-pattern), in contrast to the majority of sperm (60-70%) in the absence of M42 IgG, which progress through the intermediate phase (S-pattern) to the fully acrosome-reacted (AR-pattern) state. Incubation of sperm with zona proteins modified by incubating eggs with phorbol esters arrests sperm in the S-pattern (Y. Endo, R.M. Schultz, and G.S. Kopf, 1987, Dev. Biol. 119, 199-209). We show that once sperm have reached such a state, M42 mAb no longer exerts an inhibitory effect. The addition of unmodified ZP to S-pattern sperm permits the completion of the acrosome reaction. These results indicate that M42 mAb blocks an early step in the AR cascade and that M42 mAb is unable to prevent subsequent events of this cascade once it has been initiated.  相似文献   

10.
Sperm of many animals must complete an exocytotic event, the acrosome reaction, in order to fuse with eggs. In mammals, acrosome reactions are triggered during sperm contact with the egg extracellular matrix, or zona pellucida, by the matrix glycoprotein ZP3. Here, we show that ZP3 stimulates production of phosphatidylinositol-(3,4,5)-triphosphate in sperm membranes. Phosphatidylinositol-3-kinase antagonists that prevent acrosome reactions and fertilization in vitro, while generation of this phosphoinositide in the absence of ZP3 triggered acrosome reactions. Downstream effectors of phosphatidylinositol-(3,4,5)-triphosphate in sperm include the protein kinases, Akt and PKCzeta. These studies outline a signal transduction pathway that plays an essential role in the early events of mammalian fertilization.  相似文献   

11.
《The Journal of cell biology》1994,126(6):1573-1583
Sperm surface beta 1,4-galactosyltransferase (GalTase) mediates fertilization in mice by binding to specific O-linked oligosaccharide ligands on the egg coat glycoprotein ZP3. Before binding the egg, sperm GalTase is masked by epididymally derived glycosides that are shed from the sperm surface during capacitation. After binding the egg, sperm- bound oligosaccharides on ZP3 induce the acrosome reaction by receptor aggregation, presumably involving GalTase. In this study, we asked how increasing the levels of sperm surface GalTase would affect sperm-egg interactions using transgenic mice that overexpress GalTase under the control of a heterologous promoter. GalTase expression was elevated in many tissues in adult transgenic animals, including testis. Sperm from transgenic males had approximately six times the wild-type level of surface GalTase protein, which was localized appropriately on the sperm head as revealed by indirect immunofluorescence. As expected, sperm from transgenic mice bound more radiolabeled ZP3 than did wild-type sperm. However, sperm from transgenic animals were relatively unable to bind eggs, as compared to sperm from wild-type animals. The mechanistic basis for the reduced egg-binding ability of transgenic sperm was attributed to alterations in two GalTase-dependent events. First, transgenic sperm that overexpress surface GalTase bound more epididymal glycoside substrates than did sperm from wild-type mice, thus masking GalTase and preventing it from interacting with its zona pellucida ligand. Second, those sperm from transgenic mice that were able to bind the zona pellucida were hypersensitive to ZP3, such that they underwent precocious acrosome reactions and bound to eggs more tenuously than did wild-type sperm. These results demonstrate that sperm-egg binding requires an optimal, rather than maximal, level of surface GalTase expression, since increasing this level decreases sperm reproductive efficiency both before and after egg binding. Although sperm GalTase is required for fertilization by serving as a receptor for the egg zona pellucida, excess surface GalTase is counterproductive to successful sperm-egg binding.  相似文献   

12.
Rat epididymal glycoprotein DE (37 kDa) associates with the sperm surface during maturation and is localized over the dorsal region of the acrosome. In the present study we examine, by indirect immunofluorescence, the localization of DE after in vitro and in vivo capacitation. While 49% of sperm capacitated in vitro for 5 hr still presented fluorescence over the dorsal region, 51% showed labeling distributed over a domain that corresponds to the equatorial segment of the sperm head. This change in the localization of fluorescence was not associated with sperm deterioration or death and increased gradually as a function of capacitation time, reaching the maximum at 5 hr. The presence of labeling over the equatorial segment results from protein migration and cannot be induced by permeabilization, proteinase, or high ionic strength treatments. The omission of Ca2+ from the standard capacitation medium inhibited the relocalization of DE, and incubation with Ca2+ ionophore A23187 for induction of the acrosome reaction (AR) significantly raised the percentage of cells with DE localized over the equatorial region. Finally, while free and cumulus-associated spermatozoa recovered from the oviducts of in vivo inseminated females presented 15% and 21% of cells with redistribution respectively, all perivitelline (acrosome reacted) spermatozoa showed DE over the equatorial segment. These results indicate that epididymal protein DE migrates to the equatorial segment under in vitro and in vivo capacitating conditions and suggest a possible association between the redistribution of DE and the occurrence of the AR.  相似文献   

13.
For sperm to successfully fertilize an oocyte, it needs to pass through certain steps prior to, during and after initial recognition of the zona pellucida (ZP). During capacitation, the surface of the sperm head becomes remodelled, priming it to bind to the ZP and subsequently to undergo the ZP-induced acrosome reaction. During capacitation, sperm ZP-binding proteins are ordered in functional protein complexes that only emerge at the apical tip of the sperm head plasma membrane; this is also functionally the exclusive sperm surface area involved in primary ZP binding. After primary ZP binding, the same area is probably involved in the induction of the acrosome reaction. A combination of biochemical and proteomic membrane protein techniques have enabled us to dissect and highly purify the apical sperm plasma membrane area from control and capacitated sperm cells. The actual ZP-binding proteins identified predominantly belonged to the sperm membrane-associated family members of spermadhesins (AQN-3) and were present in the aggregating lipid ordered membrane microdomains (lipid rafts) that emerged during in vitro capacitation in the apical ridge area of the sperm head plasma membrane. This clustering of these rafts was dependent on the presence of bicarbonate (involved in protein kinase A activation) and on the presence of albumin (involved in cholesterol removal). Remarkably, cholesterol removal was restricted to the non-raft membrane fraction of the sperm plasma membrane, but did not cause any depletion of cholesterol in the raft membrane fraction. Interestingly, sperm SNARE proteins (both VAMP from the outer acrosomal membrane, as well syntaxin from the apical sperm head plasma membrane) shared lateral redistribution properties, along with the ZP-binding protein complex and raft marker proteins. All of these were recovered after capacitation in detergent-resistant membrane preparations from sperm thought to represent membrane lipid rafts. We inferred that the capacitation-dependent formation of an aggregated lipid ordered apical ridge surface area in the sperm head plasma membrane was not only relevant for ZP-binding, but also for the ZP-induced acrosome reaction.  相似文献   

14.
The guinea pig sperm protein fertilin functions in sperm-egg plasma membrane binding. Fertilin is initially present in the plasma membrane of the whole head in testicular sperm, then becomes concentrated into the posterior head domain during epididymal passage. Fertilin remains localized to the posterior head plasma membrane following the acrosome reaction, when it functions in sperm-egg interaction. Fluorescence redistribution after photobleaching was used to examine the lateral mobility of fertilin in both acrosome-intact and acrosome-reacted sperm. Fertilin exhibited highly restricted lateral mobility in both testicular and epididymal sperm (D < 10(-10) cm(2)/s). However, fertilin in acrosome-reacted sperm was highly mobile within the membrane bilayer (D = 1.8 x 10(-9) cm(2)/s and %R = 84). Measurement of the lateral mobility of fertilin in capacitated, acrosome-intact sperm revealed two populations of cells. In approximately one-half of the cells, lateral mobility of fertilin was similar to sperm freshly isolated from the cauda epididymis; while in the other half fertilin was highly mobile. The release of fertilin from interactions that restrict its lateral mobility may regulate its function in sperm-egg interaction.  相似文献   

15.
Monoclonal antibody 4E9, which was raised against a partially purified detergent extract of rat caudal epididymal sperm, recognizes the tail of sperm from the cauda, but not from caput epididymidis, as well as epithelial cells in a restricted region of the distal caput/corpus epididymidis and proteins in epididymal fluid from corpus and cauda epididymidis. The antigen is apparently a glycoprotein, since it is retained on a Ricinus communis agglutinin l lectin column. Epididymal fluid antigens have apparent MrS of 38–26 kD, whereas the memrane-associated form of the molecule has an Mr of 26 kD. Immunocytochemical data and Western immunoblot data suggest that the membrane antigen is derived from the fluid antigen, which, in turn, is secrteted by the epididymal epithelium. Characterization of the membrane antigen indicates that it is tightly associated with the sperm surface, behaving as though it is an integral membrane protein. The antigen persists on ejaculated sperm. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Although details of the molecular mechanism are not yet clear, considerable evidence suggests that the egg-specific extracellular matrix component ZP3 regulates an essential event of sperm function, the acrosome reaction. Spatial control of this exocytotic event appears to be exerted by immobilization of the triggering ligand, ZP3, in the zona pellucida matrix surrounding the egg. Our data suggest that the signal transduction pathway in sperm activated by this ligand involves highly conserved components that are involved in many other eukaryotic signalling events. Recent experiments indicate that the murine zona pellucida glycoprotein ZP3 regulates acrosomal exocytosis by aggregating its corresponding receptors (ZP3-Rs) located in the mouse sperm plasma membrane. In other experiments, we have identified a putative ZP3-R of mouse sperm with Mr 95,000. Indirect immunofluorescence localizes this ZP3-R, termed p95, to the acrosomal region of the mouse sperm head, which is the anticipated location for ZP3-Rs. Membrane fractionation studies indicate that p95 cofractionates with a plasma membrane-enriched preparation from sperm that contains zona pellucida-receptor activity. In addition to its role as a ZP3-R, p95 also serves as a substrate for a tyrosine kinase in response to zona pellucida binding. On the basis of the data presented here, and borrowing heavily from findings for other signalling systems, we have formulated two testable hypotheses that are compatible with the available data: either p95 is itself a protein tyrosine kinase receptor, or p95 serves as a ZP3 receptor and is separate from a protein tyrosine kinase that is activated during gamete interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Profile of a mammalian sperm receptor   总被引:19,自引:0,他引:19  
Complementary molecules on the surface of eggs and sperm are responsible for species-specific interactions between gametes during fertilization in both plants and animals. In this essay, several aspects of current research on the mouse egg receptor for sperm, a zona pellucida glycoprotein called ZP3, are addressed. These include the structure, synthesis, and functions of the sperm receptor during oogenesis and fertilization in mice. Several conclusions are drawn from available information. These include (I) ZP3 is a member of a unique class of glycoproteins found exclusively in the extracellular coat (zona pellucida) of mammalian eggs. (II) ZP3 gene expression is an example of oocyte-specific and, therefore, sex-specific gene expression during mammalian development. (III) ZP3 is a structural glycoprotein involved in assembly of the egg extracellular coat during mammalian oogenesis. (IV) ZP3 is a sperm receptor involved in carbohydrate-mediated gamete recognition and adhesion during mammalian fertilization. (V) ZP3 is an inducer of sperm exocytosis (acrosome reaction) during mammalian fertilization. (VI) ZP3 participates in the secondary block to polyspermy following fertilization in mammals. (VII) The extracellular coat of other mammalian eggs contains a glycoprotein that is functionally analogous to mouse ZP3. The unique nature, highly restricted expression, and multiple roles of ZP3 during mammalian development make this glycoprotein a particularly attractive subject for investigation at both the cellular and molecular levels.  相似文献   

18.
The binding of zona pellucida (ZP) glycoprotein ZP3 to mouse sperm surface receptors is mediated by protein-carbohydrate interactions. Subsequently, ZP3 induces sperm to undergo the acrosome reaction, an obligatory step in fertilization. We have previously identified Lewis X (Le(x); Gal beta 4[Fuc alpha 3]GlcNAc) as a potent inhibitor of in vitro sperm-ZP binding (Johnston et al. J Biol Chem 1998; 273:1888-1895). This glycan is recognized by approximately 70% of the ZP3 binding sites on capacitated, acrosome-intact mouse sperm, whereas Lewis A (Le(a); Gal beta 3[Fuc alpha 4]GlcNAc) is recognized by most of the remaining sites (Kerr et al. Biol Reprod 2004; 71:770-777). Herein, we test the hypothesis that Le(x)- and Le(a)-containing glycans, when clustered on a neoglycoprotein, bind ZP3 receptors on sperm and induce sperm to undergo the acrosome reaction via the same signaling pathways as ZP3. Results show that a Le(x)-containing neoglycoprotein induced the acrosome reaction in a dose-dependent and capacitation-dependent manner. A Le(a)-containing neoglycoprotein also induced sperm to undergo the acrosome reaction but was less potent than Le(x)-containing neoglycoproteins. In contrast, neoglycoproteins containing beta4-lactosamine (Gal beta 4GlcNAc), Lewis B (Fuc alpha 2Gal beta 3[Fuc alpha 4]GlcNAc), and sialyl-Le(x) glycans were inactive, as were four other neoglycoproteins with different nonfucosylated glycans. Consistent with these results, unconjugated Le(x)- and Le(a)-capped glycans were dose-dependent inhibitors, which at saturation, reduced the ZP-induced acrosome reaction by about 60% and 30%, respectively. Experiments utilizing pharmacological inhibitors suggest that induction of the acrosome reaction by solubilized ZP and Le(x)- and Le(a)-containing neoglycoproteins require the same calcium-dependent pathway. However, only the ZP-induced acrosome reaction requires a functional G(i) protein. Thus, Le(x)-containing neoglycoproteins bind to a major class of ZP3 receptors on capacitated sperm. A Le(a)-containing neoglycoprotein binds a second ZP3 receptor but is a less-potent inducer of the acrosome reaction.  相似文献   

19.
Sperm acrosomal exocytosis is essential for successful fertilization, and the zona pellucida (ZP) has been classically considered as the primary initiator in vivo. At present, following what is referred to as primary binding of the sperm to the ZP, the acrosome reaction paradigm posits that the outer acrosomal membrane and plasma membrane fuse at random points, releasing the contents of the acrosome. It is then assumed that the inner acrosomal membrane mediates secondary binding of the sperm to the ZP. In the present work we used a live fluorescence imaging system and mouse sperm containing enhanced green fluorescent protein (EGFP) in their acrosomes. We compared the processes of acrosomal exocytosis stimulated by the calcium ionophore ionomycin or by solubilized ZP. As monitored by the loss of EGFP from the sperm, acrosomal exocytosis driven by these two agents occurred differently. When ionomycin was used, exocytosis started randomly (no preference for the anterior, middle or posterior acrosomal regions). In contrast, following treatment with solubilized ZP, the loss of acrosomal components always started at the posterior zone of the acrosome and progressed in an anterograde direction. The exocytosis was slower when stimulated with ZP and on the order of 10 sec, which is in accordance with other reports. These results demonstrate that ZP stimulates acrosomal exocytosis in an orderly manner and suggest that a receptor‐mediated event controls this process of membrane fusion and release of acrosomal components. These findings are incorporated into a model. J. Cell. Physiol. 220: 611–620, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Fertilization occurs after the completion of the sperm acrosome reaction, a secretory event that is triggered during gamete adhesion. ZP3, an egg zona pellucida glycoprotein, produces a sustained increase of the internal Ca(2+) concentration in mouse sperm, leading to acrosome reactions. Here we show that the sustained Ca(2+) concentration increase is due to the persistent activation of a Ca(2+) influx mechanism during the late stages of ZP3 signal transduction. These cells also possess a Ca(2+) store depletion-activated Ca(2+) entry pathway that is open after treatment with thapsigargin. Thapsigargin and ZP3 activate the same Ca(2+) permeation mechanism, as demonstrated by fluorescence quenching experiments and by channel antagonists. These studies show that ZP3 generates a sustained Ca(2+) influx through a store depletion-operated pathway and that this drives the exocytotic acrosome reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号