首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 208 毫秒
1.
When myeloma cells are incubated at 25 °C the secretion of myeloma protein ceases within 20 minutes. The synthesis of heavy and light chains and the assembly into the completed 7 S immunoglobulin continue at over 40% of the synthetic rate at 37 °C, resulting in an increasing intracellular concentration of myeloma protein with time. When myeloma cells containing an increased myeloma protein pool were re-incubated at 37 °C, there was an initially decreased synthesis of H-chain2 relative to L-chain or total protein. Whereas L-chain synthesis returned to the pre-25 °C synthetic rate within 15 minutes, the synthesis of H-chain required over 60 minutes to return to the pre-incubation rate.Myeloma cells maintained in exponential growth contain a larger intracellular pool of H2L2 than cells in late stationary phase. When both populations of cells were incubated at 25 °C and the synthesis of H and L-chain protein measured, a reduced synthesis of H-chain was again observed. Exponentially growing cells showed an 80% reduction of H-chain synthesis after 100 minutes at 25 °C. Stationary cells, with the reduced intracellular level of H2L2, required 210 minutes to effect an equivalent reduction of H-chain synthesis.The opposite effect on myeloma protein synthesis was observed following depletion of the H2L2 pool. The intracellular H2L2 pool was reduced by allowing secretion in the absence of protein synthesis. When protein synthesis was allowed to continue following the depletion, a stimulation of myeloma protein synthesis relative to total protein synthesis was observed.These experiments suggest a close relation between the intracellular level of H2L2 and the production of H-chain. From the rapidity of the repression and de-repression of H-chain synthesis, a regulation at the translational level is suggested.  相似文献   

2.
Thermotolerant acetic acid bacteria belonging to the genus Gluconobacter were isolated from various kinds of fruits and flowers from Thailand and Japan. The screening strategy was built up to exclude Acetobacter strains by adding gluconic acid to a culture medium in the presence of 1% D-sorbitol or 1% D-mannitol. Eight strains of thermotolerant Gluconobacter were isolated and screened for D-fructose and L-sorbose production. They grew at wide range of temperatures from 10°C to 37°C and had average optimum growth temperature between 30-33°C. All strains were able to produce L-sorbose and D-fructose at higher temperatures such as 37°C. The 16S rRNA sequences analysis showed that the isolated strains were almost identical to G. frateurii with scores of 99.36-99.79%. Among these eight strains, especially strains CHM16 and CHM54 had high oxidase activity for D-mannitol and D-sorbitol, converting it to D-fructose and L-sorbose at 37°C, respectively. Sugar alcohols oxidation proceeded without a lag time, but Gluconobacter frateurii IFO 3264T was unable to do such fermentation at 37°C. Fermentation efficiency and fermentation rate of the strains CHM16 and CHM54 were quite high and they rapidly oxidized D-mannitol and D-sorbitol to D-fructose and L-sorbose at almost 100% within 24 h at 30°C. Even oxidative fermentation of D-fructose done at 37°C, the strain CHM16 still accumulated D-fructose at 80% within 24 h. The efficiency of L-sorbose fermentation by the strain CHM54 at 37°C was superior to that observed at 30°C. Thus, the eight strains were finally classified as thermotolerant members of G. frateurii.  相似文献   

3.
4.
5.
The E0′ values for the conversion of horse heart cytochrome c from the oxidized to the reduced form as a function of temperature have been measured in 0.10 M NaCl, 0.10 M sodium phosphate, pH 7.0 solutions in H2O and D2O. In H2O, the decrease in the E0′ value is linear with increasing temperature up to 42°C. Above this temperature, the decrease is again linear but with a much greater slope. In D2O solutions, however, this biphasic behavior was not observed but instead a single line was obtained over the temperature range studied (25°C to 50°C). These results are interpreted in terms of the ability of NaCl to cause a destructuring of the bulk H2O above 42°C but not in the more stable D2O (Kreishman, Foss, Inoue and Leifer (1976) Biochemistry, 15, 5431–5435). This decrease in water structure results in a shift in the equilibrium to the larger oxidized form as indicated by the decrease in E0′.  相似文献   

6.
Acholeplasma laidlawii strain A-EF22 was grown in a medium supplemented with 75 μm α-deuterated palmitic acid (16:0-d 2) and 75 μm α-deuterated oleic acid (18:1c-d 2), or with 150 μm 18:1c-d 2. The fatty acids were incorporated into the membrane lipids and 2H NMR spectra were recorded from intact membranes, total lipid extracts, and the combined glucolipid and neutral lipid fractions of a total lipid extract. The lipids in intact membranes form a bilayer structure up to at least 70 °C. The same result was obtained with membranes digested with pronase, which removes a large fraction of the membrane proteins. A reversed hexagonal liquid crystalline (HII) phase was formed below 70 °C by the total lipid extracts hydrated with 20 and 30% (w/w) water; in the presence of 40% (w/w) water only one of the extracts formed an HII phase below 70 °C. The HII phase was formed at higher temperatures with an increasing water content. However, only a lamellar liquid crystalline (L α ) phase was formed up to 70 °C by the total lipid extracts when the water concentrations were 50% (w/w) or higher. The temperature (T LH) for the L α to HII phase transition in the combined glucolipid and neutral lipid fractions was only 2–3 °C lower than for the total lipids, and the phospholipids thus have a very modest influence on the T LH value. Physiologically relevant concentrations of Ca2+ and Mg2+ ions did not affect the phase equilibria of total lipid extracts significantly. It is concluded from comparison with published data that the membrane lipids of the cell wall-less bacterium A. laidlawii have a smaller tendency to form reversed nonlamellar phases than the membrane lipids of three bacterial species surrounded by a cell wall. Received: 10 March 1997 / Accepted: 4 July 1997  相似文献   

7.
The hydrolyses of p-nitrotrifluoroacetanilide catalyzed by water and imidazole were examined at 70°C. The pH-rate constant profile of the hydrolysis in H2O was examined in the pH range 0.0–11.4. The hydrolysis was independent of pH in the region from pH 1.0 to 4.5, presumably a water-catalyzed reaction. The rate constant and the D2O solvent isotope effect for this reaction were 1.0 × 10?4 sec?1 and 3.7, respectively. Both natural imidazole and imidazolium cation catalyzed hydrolysis. The rate constant of the hydrolysis catalyzed by neutral imidazole was determined to be 5.4 × 10?3M?1 sec?1 and the D2O solvent isotope effect was 1.8.  相似文献   

8.
Human erythrocytes were incubated in a Ringer's solution enriched with 10–18% H217O. The longitudinal relaxation time (T1) of the 17O was determined separately in samples of red cell suspesions, packed cells, and supernatant. The longitudinal relaxation of 17O in erythrocyte suspensions was non-exponential, reflecting water exchange across the cell membranes as well as relaxation processes inside and outside the cell.The T1 of intracellular 17O is 4–5 times shorter than in the supernatant, similar to the enhancement of proton relaxation by hemoglobin in erythrocytes and free solution at the frequency applied (8.13 MHz). This datum is consistent with the thesis that hemoglobin modifies the NMR relaxation behavior of water inside cells and in free solution in the same way.The rate constant
for water exchange was calculated to be 60 and 107 s−1 at 25 and at 37° C, respectively. The apparent activation energy for
over the temperature range 23–37° C was 8.7±1.0 kcal/mole.  相似文献   

9.
To avoid intracellular freezing and its usually lethal consequences, cells must lose their freezable water before reaching their ice-nucleation temperature. One major factor determining the rate of water loss in the temperature dependence of the water permeability,L p (hydraulic conductivity). Because of the paucity of water permeability measurements at subzero temperatures, that temperature dependence has usually been extrapolated from above-zero measurements. The extrapolation has often been based on an exponential dependence ofL p on temperature. This paper compares the kinetics of water loss based on that extrapolation with that based on an Arrhenius relation betweenL p and temperature, and finds substantial differences below ?20 to ?25°C. Since the ice-nucleation temperature of mouse ova in the cryoprotectants DMSO and glycerol is usually below ?30°C, the Arrhenius form of the water-loss equation was used to compute the extent of supercooling in ova cooled at rates between 1 and 8°C/min and the consequent likelihood of intracellular freezing. The predicted likelihood agrees well with that previously observed. The water-loss equation was also used to compute the volumes of ova as a function of cooling rate and temperature. The computed cell volumes agree qualitatively with previously observed volumes, but differ quantitatively.  相似文献   

10.
Culture conditions for the preparation of cells containing high tyrosine phenol lyase activity were studied with Erwinia herbicola ATCC 21434. Adding pyridoxine to the medium enhanced enzyme formation, suggesting that it was utilized as a precursor of the coenzyme, pyridoxal phosphate. Glycerol plus succinic acid; amino acids, such as, DL-methionine, DL-alanine and glycine; and metallic ion, ferrous ion promoted enzyme formation as well as cell growth. Adding L-tyrosine, as inducer, to the culture medium was essential for enzyme formation. However, when large amounts of L-tyrosine were added, the enzyme formation was repressed by the phenol liberated from L-tyrosine. In fact, formation of the enzyme was enhanced by removing phenol during cultivation. L(D)-Phenylalanine or phenylpyruvic acid had a synergistic effect on the induction of enzyme by L-tyrosine.

Cells with high enzyme activity were prepared by growing cells at 28°C for 28 hr in a medium containing 0.2% L-tyrosine, 0.2% KH2PO4, 0.1% MgSO47H2O, 0.001% FeSO7H2O, 0.01% pyridoxine-HC1, 0.6% glycerol, 0.5% succinic acid, 0.1% DL-methionine, 0.2% DL-alanine, 0.05% glycine, 0.1% L-phenylalanine and 120 ml/liter hydrolyzed soybean protein in tap water with the pH controlled at 7.5 throughout cultivation.  相似文献   

11.
Arthrospira (Spirulina) is widely used as human health food and animal feed. In cultures grown outdoors in open ponds, Arthrospira cells are subjected to various environmental stresses, such as high temperature. A better understanding of the effects of high temperature on photosynthesis may help optimize the productivity of Arthrospira cultures. In this study, the effects of heat stress on photosynthetic rate, chlorophyll a fluorescence transients, and photosystem (PS) II, PSI activities in a marine cyanobacterium Arthrospira sp. were examined. Arthrospira cells grown at 25 °C were treated for 30 min at 25 (control), 30, 34, 37, or 40 °C in the dark. Heat stress (30–37 °C) enhanced net photosynthetic O2 evolution rate. Heat stress caused over-reduction PSII acceptor side, damage of donor side of PSII, decrease in the energetic connectivity of PSII units, and decrease in the performance of PSII. When the temperature changed from 25 to 37 °C, PSII activity decreased, while PSI activity increased, the enhancement of photosynthetic O2 evolution was synchronized with the increase in PSI activity. When temperature was further increased to 40 °C, it induced a decrease in photosynthetic O2 evolution rate and a more severe decrease in PSII activity, but an increase in PSI activity. These results suggest that PSI activity was the decisive factor determining the change of photosynthetic O2 evolution when Arthrospira was exposed to a temperature from 25 to 37 °C, but then, PSII activity became the decisive factor adjusting the change of photosynthetic O2 evolution when the temperature was increased to 40 °C.  相似文献   

12.
The objective of this study comprises of developing novel co-spray dried rifampicin phospholipid lipospheres (SDRPL) to investigate its influence on rifampicin solubility and oral bioavailability. Solid-state techniques were employed to characterize the liposphere formulation. SDRPL solubility was determined in distilled water. BACTEC 460TB System was employed to evaluate SDRPL antimycobacterial activity. The oral bioavailability of the lipospheres was evaluated in Sprague Dawley rats. Lipospheres exhibited amorphous, smooth spherical morphology with a significant increase (p?<?0.001) in solubility of SDRPL (2:1), 350.9?±?23 versus 105.1?±?12 μg/ml and SDRPL (1:1) 306.4?±?20 versus 105.1?±?12 μg/ml in comparison to rifampicin (RMP). SDRPL exhibited enhanced activity against Mycobacterium tuberculosis, H37Rv strain, with over twofolds less minimum inhibitory concentration (MIC) than the free drug. Lipospheres exhibited higher peak plasma concentration (109.92?±?25 versus 54.31?±?18 μg/ml), faster T max (two versus four hours), and enhanced area under the curve (AUC0–∞) (406.92?±?18 versus 147.72?±?15 μg h/L) in comparison to pure RMP. Thus, SDRPL represents a promising carrier system exhibiting enhanced antimycobacterial activity and oral bioavailability of rifampicin.  相似文献   

13.

Introduction

Urethral stricture, a frequent source of lower urinary tract disorders in men, is still a difficult problem for urologists. Based the anti-restenosis effect of paclitaxel on coronary artery, the role of docetaxel, a semi-synthetic analogue of paclitaxel, in limiting urethral stricture formation was studied.

Methods

Forty adult New Zealand male rabbits were involved in this study, which were randomly assigned into 3 groups, namely a high dose docetaxel (DH, 0.1 mg/d), a low dose docetaxel (DL, 0.01 mg/d) and a control (C) group, with 16, 16, 8 rabbits in each group, respectively. All animals underwent a 10 mm-long circumferential electrocoagulation of the bulbar urethra with a 13Fr pediatric resectoscope. Drugs were given by urethral irrigation daily and continuous for 28 days. Stricture formation was assessed by retrograde urethrography and videourethroscopy. Urethra pathology was evaluated by hematoxylin and eosin staining and Sirius red staining.

Results

At the end of this study, 15, 14 and 7 rabbits remained for evaluation in DH, DL and C group, respectively. Urethral diameters in DH, DL and C group were (7.17±1.63) mm, (6.55±0.62) mm, (3.23±1.36) mm, with a normal urethral diameter of (9.08±1.29) mm. Lumen reduction in DH, DL and C group were (36.93±11.58)%, (48.03±7.89)% and (84.66±14.95)%, respectively. Statistically difference could be found between every two groups (p<0.05) both in urethral diameters and in lumen reduction, except for compare of urethral diameters between DH and DL group. Histological examination confirmed mass fibrous tissue and collagen content at the stricture sit in C group, whereas less in docetaxel treated rabbits.

Conclusions

Docetaxel could limit urethral stricture formation, which may be due to inhibition of fibrous tissue and collagen expression. Docetaxel may become a new choice in the prevention of urethral stricture formation.  相似文献   

14.
15.
Effects of D2O were studied on internodal cells of the freshwater alga Nitellopsis obtusa under plasmalemma perfusion (tonoplast-free cells) with voltage clamp, and on Ca2+ channels isolated from the alga and reconstituted in bilayer lipid membranes (BLM). External application of artificial pond water (APW) with D2O as the solvent to the perfused plasmalemma preparation led to an abrupt drop of membrane resistance (R m = 0.12 ±0.03 kΩ · cm2), thus preventing further voltage clamping. APW with 25% D2O caused a two-step reduction of R m : first, down to 2.0 ± 0.8 kΩ · cm2, and then further to 200 Ω · cm2, in 2 min. It was shown that in the first stage, Ca2+ channels are activated, and then, Ca2+ ions entering through them activate the Cl? channels. The Ca2+ channels are activated irreversibly. If 100 mm CsCl was substituted for 200 mm sucrose (introduced for isoosmoticity), no effect of D2O on R m was observed. Intracellular H2O/D2O substitution also did not change R m . In experiments on single Ca2+ channels in BLM H2O/ D2O substitution in a solution containing 100 mm KCl (trans side) produced no effect on channel activity, while in 10 mm KCl, at negative voltage, the open channel probability sharply increased. This effect was irreversible. The single channel conductance was not altered after the H2O/D2O substitution. The discussion of the possible mechanism of D2O action on Ca2+ and Cl? channels was based on an osmotic-like stress effect and the phenomenon of higher D-bond energy compared to the H-bond.  相似文献   

16.
17.
The 14N nuclear relaxation times T1 and T2 in egg yolk phosphatidylcholine have been observed in single bilayer vesicles dispersed in the media of different viscosities, 1H2O and 2H2O. The lateral diffusion coefficient of lipid molecule D has been calculated according to the method reported earlier: D = 2.2 × 10?8cm2s?1 in 1H2O and 2.1 × 10?8cm2s?1 in 2H2O at 20°C. They are in excellent agreement. This result gives a strong basis of usefulness of 14N NMR method in the evaluation of D without introducing any system perturbation.  相似文献   

18.
Two new ligand-containing histidine based on N,N′,N″-tris(N-benzyl-l-histidinyl)tri(2-aminoethyl)amine, L1, namely N,N′,N″-tris[(1S)-2-methoxy-2-oxy-1-(1-benzylimidazol-4-ylmethyl)]nitrilotriacetamide L2 and N,N′,N″-tris{N-benzyl-N-[N-benzyl-N-(N-benzyl-l-histidinyl)-l-histidinyl]-l-histidinyl}tri(2-aminoethyl)amine L3 were prepared. Zinc(II) binding studies by these ligand systems were analyzed by means of potentiometric and 1H NMR titrations in aqueous methanol (33 % v/v). Subsequently their zinc(II) complexes [L1Zn(H2O)](ClO4)2·HClO4 (1), [L2Zn(OH2)](ClO4)2·H2O (2), and ([L3Zn3(H2O)3](ClO4)6·3HClO4·5H2O (3), respectively were synthesized and characterized. The reactivity of the trinuclear complex (3) toward the hydrolysis of the toxic organophosphate parathion was investigated and compared with that of the mononuclear reference complex (1). From the pH dependence of the apparent rate constants, and the deprotonation constant (pKa) of the coordinated water molecules in (1), the active species were confirmed to be {[HL1Zn(OH)]2+/[L1Zn(H2O)]2+} at pH 8.5. The trizinc complex (3) effects hydrolysis of parathion, with three times rate enhancement over the mononuclear (1), indicating that cooperative action of the three zinc centers is limited.  相似文献   

19.
This study investigated the role of hydrogen sulfide (H2S) in the regulation of the ascorbate (AsA) and glutathione (GSH) metabolism by jasmonic acid (JA) in the leaves of Arabidopsis thaliana by using H2S scavenger hypotaurine (HT) and H2S synthetic mutant (SALK_041918, designated Atl-cdes). The results showed that JA significantly increased the H2S content, the activities of L-cysteine desulfhydrase (L-CDes), D-cysteine desulfhydrase (D-CDes), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), L-galactono-1,4-lactone dehydrogenase (GalLDH) and γ-glutamylcysteine synthetase (γ-ECS), the ratio of AsA to dehydroascorbate (DHA), and decreased the content of malondialdehyde (MDA) and H2O2 in the wild type of A. thaliana, compared to control. The above effects of JA except the increased activities of L-CDes and D-CDes were suppressed by addition of HT. However, JA and HT+JA had no significant effects on the ratio of reduced GSH to oxidized GSH (GSSG) in the wild type of A. thaliana. Application of HT to the control decreased H2S content, AsA/DHA ratio, and activities of APX, GR, DHAR, MDHAR, γ-ECS, and GalLDH, but had no effects on MDA content, activities of L-CDes and D-CDes, and GSH/GSSG ratio. In the H2S synthetic mutant, JA had no obvious effects on above mentioned parameters except the D-CDes activity compared with the control. Our results suggest that JA-induced H2S, which is a signal that leads to the up-regulation of the AsA and GSH metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号