首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Brassica species, self-incompatibility has been mapped genetically to a single chromosomal location. In this region several closely linked genes have been identified. One of them, S-locus receptor kinase (SRK), determines S haplotype specificity of the stigma and it's the key protein for SI reaction. The role of the S locus glycoprotein (SLG) gene remains unclear. In the last decade approximately 15 additional genes linked to S-locus have been found. Recently, a gene has been identified (SCR) that encodes a small cysteine-rich protein which is a candidate for the pollen ligand. In addition to S locus linked genes there are unlinked SLRgenes (S-locus related genes). In this review, we discuss the role of these genes and the current view on the self-incompatibility mechanism in Brassica.  相似文献   

3.
Plants have mechanisms to promote outbreeding and thereby to increase their genetic diversity. In species that are self-incompatible, self-pollen is rejected by the stigma. This mechanism has been the subject of intense study for many years and, in the past two years, significant progress has been made in identifying the genes involved in Brassica. Self-recognition involves two genes, one of which determines the male and the other the female specificity. Considerable progress has also been made on the mechanism by which self-recognition leads to pollen rejection, although the delineation of all the genes involved is still not complete.  相似文献   

4.
In most self-incompatible plant species, recognition of self-pollen is controlled by a single locus, termed the S-locus. In Brassica, genetic dissection of the S-locus has revealed the presence of three highly-polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also known as S-locus cysteine-rich protein; SCR) and S-locus glycoprotein (SLG). SRK encodes a membrane-spanning serine/threonine kinase that determines the S-haplotype specificity of the stigma. SP11 encodes a small cysteine-rich protein that determines the S-haplotype specificity of pollen. SLG encodes a secreted form of stigma protein similar to the extracellular domain of SRK. Recent biochemical studies have revealed that SP11 functions as the sole ligand for its cognate SRK receptor complex. Their interaction induces the autophosphorylation of SRK, which is expected to trigger the signalling cascade that results in the rejection of self-pollen. This so-called ligand-receptor complex interaction and receptor activation occur in an S-haplotype-specific manner, and this specificity is almost certainly the basis for self-pollen recognition.  相似文献   

5.
《Current biology : CB》2021,31(14):3004-3016.e4
  1. Download : Download high-res image (236KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
Evolutionary dynamics of self-incompatibility alleles in Brassica   总被引:2,自引:0,他引:2  
Uyenoyama MK 《Genetics》2000,156(1):351-359
Self-incompatibility in Brassica entails the rejection of pollen grains that express specificities held in common with the seed parent. In Brassica, pollen specificity is encoded at the multipartite S-locus, a complex region comprising many expressed genes. A number of species within the Brassicaceae express sporophytic self-incompatibility, under which individual pollen grains bear specificities determined by one or both S-haplotypes of the pollen parent. Classical genetic and nucleotide-level analyses of the S-locus have revealed a dichotomy in sequence and function among S-haplotypes; in particular, all class I haplotypes show dominance over all class II haplotypes in determination of pollen specificity. Analysis of an evolutionary model that explicitly incorporates features of the Brassica system, including the class dichotomy, indicates that class II haplotypes may invade populations at lower rates and decline to extinction at higher rates than class I haplotypes. This analysis suggests convergence to an evolutionarily persistent state characterized by the maintenance in high frequency of a single class II haplotype together with many class I haplotypes, each in low frequency. This expectation appears to be consistent with empirical observations of high frequencies of relatively few distinct recessive haplotypes.  相似文献   

8.
Self-incompatibility in Brassica campestris c.v. Arlo is controlled by a single locus sporophytic system. The identity and expression of the S alleles were determined in eight inbred and two hybrid families. It was found that co-dominance of alleles is more frequent in the stigma, whereas dominance relations between pairs of alleles predominate in the pollen. A linear order of dominance was established between six S alleles and alleles high, intermediate and low in the dominance series were recognized.In considering the variation in the expression of compatibility and the segregation ratios in inbred, F1, F2 and backcross progenies, the presence of a specific S allele conditioning self-fertility, or a single dominant self-compatibility factor independent of the S locus could not be established. Instead, self-compatibility in this cultivar was ascribed to the segregation of a polygenic complex which is capable of modifying the incompatibility reaction to the point of self-fertility, or to a reduction in the strength of the reaction due to the presence of S alleles low in the dominance series.  相似文献   

9.
The evolution of dry stigmas has been accompanied by the development — in the pollen — of mechanisms for accessing water from the stigmatic epidermis. Development of self- and cross-pollen on the stigmatic surface has been examined in Brassica oleracea, focusing on the hydration of the grains. Unlike self-compatible (SC) Arabidopsis thaliana, pollen hydration of self-incompatible (SI) Brassica oleracea is preceded by a latent period of between 30–90 min, which is significantly shortened by inhibition of protein synthesis in the stigma. Physiological experiments, some with isolated pollen coatings, indicate that during the latent period signals passing from the pollen to the sigma are responsible for readying the stigmatic surface for penetration and — after self-pollination — activation of the SI system. The changes at the stigma surface include the expansion of the outer layer of the cell wall beneath the grain. This expansion does not occur following self-pollination, when coating-derived signals stimulate a stigmatic response which interrupts hydration and arrests grain development. Cell manipulation studies suggest that self grains are not inhibited metabolically, but are physiologically isolated from the subjacent stigmatic papilla. This focusing of the SI response at the pollen-stigma interface ensures that a single papilla can simultaneously accept cross-pollen and reject self-grains. The evolution of this highly efficient SI system is disussed in the perspective of pathogen-defence mechanisms known also to be located in epidermal cells.  相似文献   

10.
Pollen tubes penetrated stigma papilla cells in flowers thatwere illegitimately (self) pollinated, after CO2 treatment ofthese flowers. This shows that the self-incompatible reactionin Brassica can be removed by CO2 gas. Ethylene gas was noteffective. (Received May 16, 1969; )  相似文献   

11.
Recombination and selection at Brassica self-incompatibility loci   总被引:1,自引:0,他引:1  
Awadalla P  Charlesworth D 《Genetics》1999,152(1):413-425
In Brassica species, self-incompatibility is controlled genetically by haplotypes involving two known genes, SLG and SRK, and possibly an as yet unknown gene controlling pollen incompatibility types. Alleles at the incompatibility loci are maintained by frequency-dependent selection, and diversity at SLG and SRK appears to be very ancient, with high diversity at silent and replacement sites, particularly in certain "hypervariable" portions of the genes. It is important to test whether recombination occurs in these genes before inferences about function of different parts of the genes can be made from patterns of diversity within their sequences. In addition, it has been suggested that, to maintain the relationship between alleles within a given S-haplotype, recombination is suppressed in the S-locus region. The high diversity makes many population genetic measures of recombination inapplicable. We have analyzed linkage disequilibrium within the SLG gene of two Brassica species, using published coding sequences. The results suggest that intragenic recombination has occurred in the evolutionary history of these alleles. This is supported by patterns of synonymous nucleotide diversity within both the SLG and SRK genes, and between domains of the SRK gene. Finally, clusters of linkage disequilibrium within the SLG gene suggest that hypervariable regions are under balancing selection, and are not merely regions of relaxed selective constraint.  相似文献   

12.
13.
In cruciferous plants, self-pollination is prevented by the action of genes situated at the self-incompatibility locus or S-locus. The self-incompatibility reaction is associated with expression of stigma glycoproteins encoded by the S-locus glycoprotein (SLG) gene. Only a few cases of self-compatible plants derived from self-incompatible lines in the crucifer Brassica have been reported. In these cases, self-compatibility was generally ascribed to the action of single genes unlinked to the S-locus. In contrast, we report here a line of Brassica oleracea var acephala with a self-compatible phenotype linked to the S-locus. By means of both biochemical and immunochemical analyses, we showed that this self-compatible (Sc) line nonetheless possesses stigmatic SLGs (SLG-Sc) that are expressed with a similar spatial and temporal pattern to that described for the SLGs of self-incompatible Brassica plants. Moreover, the SLG-Sc products segregate with the self-compatibility phenotype in F2 progeny, suggesting that changes at the S-locus may be responsible for the occurrence of the self-compatibility character. A cDNA clone encoding the SLG-Sc product was isolated, and the deduced amino acid sequence showed this glycoprotein to be highly homologous to the pollen recessive S2 allele glycoprotein. Hence, self-compatibility in this Brassica Sc line correlates with the expression of a pollen recessive-like S allele in the stigma.  相似文献   

14.
 The physical localization of the S-glycoprotein (SLG) locus in the chromosome of Brassica campestris L. ‘pekinensis’ cv ‘Kukai’ was visualized by multi-color fluorescent in situ hybridization (McFISH). ‘Kukai’, which is an F1 hybrid between two parental lines, T-17 and T-18, has two SLG genes from both T-17 and T-18. In this study, a 1.3-kb DNA fragment was amplified from the genomic DNA of T-17 by PCR using a set of primers specific to the class-I SLG. From the genomic DNA of T-18, no DNA fragment was amplified using these primers. In the genomic Southern hybridization, a cloned PCR product hybridized with the genomic DNA of T-17 or F1 but not with that of T-18. The PCR product had a sequence homology of approximately, 85% to another class-I SLG gene, SLG-9. Therefore, the PCR product from T-17 was named SLG-17, as it is thought to be a member of the class-I SLG. Using SLG-17 as the probe, FISH was carried out to visualize the position of the SLG locus. McFISH was also carried out simultaneously using the SLG-17 and SLG-9 genes as probes. The SLG-17 gene was detected as a doublet signal at the interstitial region close to the end of a small chromosome, with the signal site being identical to that of SLG-9. Therefore, it is concluded that the SLG-17 gene is localized at the interstitial region close to the end of the chromosome derived from T-17 in Brassica campestris L. ‘pekinensis’ cv ‘Kukai’. Received: 18 September 1997 / Accepted: 6 October 1997  相似文献   

15.
Self-incompatibility (SI) systems are widespread mechanisms that prevent self-fertilization in angiosperms. They are generally encoded by one genome region containing several multiallelic genes, usually called the S-locus. They involve a recognition step between the pollen and the pistil component and pollen is rejected when it shares alleles with the pistil. The direct consequence is that rare alleles are favored, such that the S-alleles are subject to negative frequency-dependent selection. Several theoretical articles have predicted the specific patterns of polymorphism, compared to neutral loci, expected for such genes under balancing selection. For instance, many more alleles should be maintained and populations should be less differentiated than for neutral loci. However, empirical tests of these predictions in natural populations have remained scarce. Here, we compare the genetic structure at the S-locus and microsatellite markers for five natural populations of the rare species Brassica insularis. As in other Brassica species, B. insularis has a sporophytic SI system for which molecular markers are available. Our results match well the theoretical predictions and constitute the first general comparison of S-allele and neutral polymorphism.  相似文献   

16.
S受体激酶(S—receptor kinase,SRK)和S位点富含半胱氨酸(S-locus cysteine-rich,SCR)分别是甘蓝柱头和花粉中导致自交不亲和反应的决定性蛋白质因子。本文就SRK、SCR的结构和功能加以综述,阐明两者在细胞信号转导中的作用。  相似文献   

17.
18.
Self-incompatibility (SI) has emerged as an evolutionary strategy to enhance the genetic variability of plant species. In Brassica, it is controlled by a single multiallelic locus, the S-locus, encoding a receptor kinase (SRK) expressed in the stigma papilla cells and its ligand, a small protein (SCR) located in the pollen coat. Pollen rejection is achieved only when the receptor recognizes SCR coming from the same S-allele. If a single papilla cell is simultaneously pollinated by a self- and a cross-pollen grain, it is capable of distinguishing between the two and responding accordingly, rejecting self while accepting cross pollen. This phenomenon reveals that SI response is strictly localized and does not involve the whole papilla cell. It also suggests that the distribution of SRK inside the cell may play an important role in regulating this dual response. We have recently demonstrated that SRK is mostly intracellular, only small amounts being present in distinct domains of the plasma membrane (PM), where interaction with SCR occurs. Following ligand recognition, the receptor-ligand complex is endocytosed and degraded. Based on this, we propose a model of the significance of SRK intracellular trafficking for the functioning and specificity of SI response.Key words: self-incompatibility, S-receptor kinase, internalization, SI domains  相似文献   

19.
Summary The effects of hexane, high humidity, flower age and temperature in overcoming the self-incompatibility of Brassica oleracea were studied using three plants, each of which was homozygous for a different dominant S-allele. Hexane had a significant effect in all cases, but the size of the effect varied considerably. In one plant there was a marked interaction between the effect of hexane, humidity and flower age, but temperature had relatively little effect. In another plant high humidity alone gave a very much greater response than hexane alone. This plant gave as many self-seeds from the high humidity treatment as from bud selfing, indicating that the incompatibility reaction was almost completely overcome by the high humidity. The results are discussed in the light of current views of the mechanism of incompatibility in Brassica.  相似文献   

20.
Structure of the male determinant factor for Brassica self-incompatibility   总被引:1,自引:0,他引:1  
Many flowering plants possess a self-incompatibility system to prevent inbreeding. In Brassica rapa, self/non-self recognition in mating is established through S-haplotype-specific interactions between stigma receptors and S-locus protein 11 (SP11, also called S-locus cysteine-rich protein) that is encoded at the highly polymorphic S-locus. Here we describe the solution structure of the SP11 protein of the S8-haplotype (S8-SP11), which specifically binds to the stigma factor of the same haplotype. It folds into an alpha/beta sandwich structure that resembles those of plant defensins. Residues important for structural integrity are highly conserved among the allelic SP11s, suggesting the existence of a common folding pattern. Structure-based sequence alignment and homology modeling of allelic SP11 identified a hyper-variable (HV) region, which is thought to form a loop that bulges out from the body of the protein that is amenable to solvent exposure. We suggest that the HV region could serve as a specific binding site for the stigma receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号