首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
Microautoradiography was used to follow the translocation pathways of 14C-labeled photosynthate from mature source leaves, through the stem, to immature sink leaves three nodes above. Translocation occurred in specific bundles of the midveins and petioles of both the source and sink leaves and in the interjacent internodes. When each of six major veins in the lamina of an exporting leaf was independently spot-fed 14CO2, label was exported through specific bundles in the petiole associated with that vein. When the whole lamina of a mature source leaf was fed 14CO2, export occurred through all bundles of the lamina, but acropetal export in the stem was confined to bundles serving certain immature sink leaves. Cross-transfer occurred within the stem via phloem bridges. Leaves approaching maturity translocated photosynthate bidirectionally in adjacent subsidiary bundles of the petiole. That is, petiolar bundles serving the lamina apex were exporting unlabeled photosynthate while those serving the lamina base were simultaneously importing labeled photosynthate. The petioles and midveins of maturing leaves were strong sinks for photosynthate, which was diverted from the export front to differentiating structural tissues. The data support the idea of bidirectional transport in adjacent bundles of the petiole and possibly in adjacent sieve tubes within an individual bundle.Abbreviations C central leaf trace - L left leaf trace - LPI leaf plastochron index - R right leaf trace  相似文献   

2.
The incorporation and distribution of photosynthetically fixed 14CO2 was followed for 48 hours in a recently matured source leaf (LPI 7) and in young expanding source and sink leaves (LPI 4) of cottonwood (Populus deltoides Bartr.). The major chemical constituents of leaf laminae and petioles were separated by sequential solvent extractions and enzyme hydrolyses. Two hours after labeling, about 80% of the 14C was found in water-alcohol-soluble constituents in the mature source lamina as compared to about 45% in those of the young expanding leaf. In both mature and expanding source leaves the water-alcohol-soluble constituents decreased while the CHCl3-soluble and -insoluble compounds increased with time. After 48 hours, 7 and 37% of the total 14C was recovered from structural carbohydrates and from protein + CHCl3-soluble fractions, respectively, in the mature source leaf; and 4 and 65%, respectively, in the young source leaf. When the distribution of 14C among major chemical fractions was calculated on per cent dpm/mg basis, the data showed that a young sink leaf incorporated over twice as much 14C into structural carbohydrates as a young source leaf (11% versus 4%). However, when calculated on an absolute dpm/mg basis, activity in this fraction of the young source leaf exceeded that in the sink leaf by a ratio of about 11:1 (9528 versus 845 dpm/mg). Thus, most of the material for synthesis of structural carbohydrates was derived from in situ photosynthate.  相似文献   

3.
Summary Individual leaves of eastern cottonwood (Populus deltoides Bartr.), representing an ontogenetic series from leaf plastochron index (LPI) 3.0 to 8.0, were fed 14CO2 and harvested after 2–24 h. Importing leaves from LPI-1.0 through 8.0 on each plant were sectioned into 9 parts, and each part was quantitatively assayed for 14C activity. The highest level of 14C import was by leaves from LPI 1.0 to 3.0, irrespective of source-leaf age. 14C was translocated preferentially to either the right or left lamina-half depending on the position of the importing leaf in the phyllotactic sequence and its stage of development. For example, import was high when the importing leaf and the source leaf had two vascular bundles in common, moderately high with one bundle in common, and low with no bundles in common. The distribution of 14C within young importing leaves was highest in the lamina tip and decreased toward the base. With increasing leaf age, incorporation declined in the lamina tip and increased in the base.It may be concluded that each cottonwood leaf progresses through a continuum of importing and exporting stages as its lamina expands. The photosynthate imported by a given leaf is compartmentalized, with different exporting leaves supplying photosynthate to rather restricted regions of the lamina. Such localization within the importing leaf depends on its vascular connections with each of the exporting leaves, and these are predictable from a knowledge of the phyllotaxy.Plant Physiologists.  相似文献   

4.
Sink-to-source transition was studied in developing sugarcane (Saccharum interspecific variety L62–96) leaves. Fully-expanded, mature sugarcane leaves were fed 14CO2 for 20 minutes, incorporating about 617 Bq. After five hours the leaves of each plant were cut into 1-cm-length segments that were weighed and then placed in scintillation cocktail for counting. All leaves younger than the leaf fed 14CO2 imported labeled photoassimilate. Three to four leaves had both importing and non-importing regions within the blade and a distinct transition region between them. A transition region was observed in leaves which had expanded to between 30 and 90 % of final blade length. Radioactivity per gram fresh weight was calculated as a measure of sink strength. Sink strength was greatest in the youngest leaf and declined with leaf age. The results of this study indicate that 1) import of photosynthate by developing sugarcane leaves occurs over a longer span of developmental ages than in dicotyledonous leaves and 2) the actual tissue region undergoing transition within such a leaf can be resolved as narrow zone between the importing and non-importing regions.  相似文献   

5.
This study investigated the nitrogen (N) acquisition from soil and insect capture during the growth of three species of pitcher plants, Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. 15N/14N natural abundance ratios (δ15N) of plants and pitchers of different age, non-carnivorous reference plants, and insect prey were used to estimate proportional contributions of insects to the N content of leaves and whole plants. Young Nepenthes leaves (phyllodes) carrying closed pitchers comprised major sinks for N and developed mainly from insect N captured elsewhere on the plant. Their δ15N values of up to 7.2‰ were higher than the average δ15N value of captured insects (mean δ15N value = 5.3‰). In leaves carrying old pitchers that are acting as a N source, the δ15N decreased to 3.0‰ indicating either an increasing contribution of soil N to those plant parts which in fact captured the insects or N gain from N2 fixation by microorganisms which may exist in old pitchers. The δ15N value of N in water collected from old pitchers was 1.2‰ and contained free amino acids. The fraction of insect N in young and old pitchers and their associated leaves decreased from 1.0 to 0.3 mg g−1. This fraction decreased further with the size of the investigated tiller. Nepenthes contained on average 61.5 ± 7.6% (mean ± SD, range 50–71%) insect N based on the N content of a whole tiller. In the absence of suitable non-carnivorous reference plants for Cephalotus, δ15N values were assessed across a developmental sequence from young plants lacking pitchers to large adults with up to 38 pitchers. The data indicated dependence on soil N until 4 pitchers had opened. Beyond that stage, plant size increased with the number of catching pitchers but the fraction of soil N remained high. Large Cephalotus plants were estimated to derive 26 ± 5.9% (mean ± SD of the three largest plants; range: 19–30%) of the N from insects. In Cephalotus we observed an increased δ15N value in sink versus source pitchers of about 1.2‰ on average. Source and sink pitchers of Darlingtonia had a similar δ15N value, but plant N in this species showed δ15N signals closer to that of insect N than in either Cephalotus or Nepenthes. Insect N contributed 76.4 ± 8.4% (range 57–90%) to total pitcher N content. The data suggest complex patterns of partitioning of insect and soil-derived N between source and sink regions in pitcher plants and possibly higher dependence on insect N than recorded elsewhere for Drosera species. Received: 14 April 1997 / Accepted: 18 August 1997  相似文献   

6.
The homogenate and chloroplast fractions isolated from the leaves of 10–14-day-old kidney-bean (Phaseolus vulgaris L.) seedlings were incubated with 14C-L-phenylalanine for 30 min in the light, and the incorporation of radioactivity into phenolic compounds was determined. Label incorporation into phenolic compounds of the homogenate and chloroplast fractions amounted to 15–17 and 4–5% of the introduced radioactivity, respectively. The chloroplasts were about an order of magnitude higher than the homogenate in the specific radioactivity of phenolic compounds. Chloroplasts contained four flavonol glycosides (kaempferol and quercetin aglycones), which were the major components of soluble phenolic compounds of leaves. It was concluded that kidney-bean leaf chloroplasts were capable of performing phenolic compound biosynthesis.  相似文献   

7.
The long-term effects of enhanced UV-B radiation on the content and composition of leaf phenolics in Epilobium angustifolium L. and Eriophorum russeolum Fries ex Hartman were studied in northern Finland (68°N) using two UV-B enhancement experiments, both simulating UV-BCIE radiation and corresponding to a 20% loss of ozone layer. High proportions of hydrolyzable tannins (69%) and condensed tannins (66%) characterized both Epilobium and Eriophorum leaves, respectively. No UV treatment effect was detected in the content or composition of Epilobium leaf soluble phenolics, whereas significant UV effects were detected in Eriophorum leaves in a developmental-specific manner. At the end of the growing season, the proportion of total soluble phenolics was higher in leaves exposed to enhanced UV-A and UV-B radiation than in the control leaves, but the phenolic composition was not significantly modified. This study introduces a new example on plants’ phenolic response to UV radiation being species-specific and detectable only at certain developmental stages. Possible consequences of increased phenolic content in forage plants for selection and digestibility by reindeer are, however, not yet known.  相似文献   

8.
Rising levels of atmospheric CO2 can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDBe) are similar but alternative models that address ontogenetic and environmental effects on whole‐plant carbon partitioning to the phenylpropanoid biosynthetic pathway, making many divergent predictions. To test the validity of the models, we compare plant responses to one key prediction: if CO2 enrichment simultaneously stimulates both photosynthesis and growth, then PCM predicts that partitioning to phenolic compounds will decline, whereas GDBe generally predicts the opposite. Elevated CO2 (at 548 ppm) increased the biomass growth (ca 23%) as well as the net photosynthesis (ca 13%) of 1‐year‐old potted paper birch, Betula papyrifera Marsh., in a free air carbon dioxide enrichment study (FACE) in northern Wisconsin. Concomitantly, elevated CO2 increased carbon partitioning to all measured classes of phenolics (Folin‐Denis phenolics, HPLC low molecular weight phenolics (i.e. cinnamic acid derivatives, flavonol glycosides, and flavon‐3‐ols), condensed tannins, and acid‐detergent lignin) in leaves. In stem tissues, tannins and lignin increased, but F‐D phenolics did not. In root tissues, F‐D phenolics, and tannins increased, but lignin did not. The data suggest that CO2 enrichment stimulated pathway‐wide increase in carbon partitioning to phenylpropanoids. High CO2 plants had 11.8% more F‐D phenolics, 19.3% more tannin, and 10% more lignin than ambient plants after adjusting for plant mass via analysis of covariance. In general, the results unequivocally support the predictions of the GDBe model. By way of contrast, results from many parallel studies on FACE trembling aspen, Populus tremuloides Michx., suggest that although CO2 enrichment has consistently stimulated both photosynthesis and growth, it apparently did not generally stimulate pathway‐wide increases, or decreases, in carbon partitioning to phenylpropanoids in leaves and wood, but rather has specifically, though not consistently, increased partitioning to foliar phenolic glycosides. Likewise, in this case, GDBe's predictions better accord with the FACE aspen data than PCM's. If further tests of the two models also support GDB rather than PCM, then PCM's main assumption (whole‐plant N rather than C is limiting partitioning to phenolic synthesis) may be incorrect.  相似文献   

9.
Traditional approaches to the question of the effects of plant secondary metabolites on the feeding choices of folivores of Eucalyptus have focused on the tree species level, although numerous field studies of foraging behaviour have identified selection at the level of the individual trees. Attempts to relate these decisions to deterrency resulting from secondary leaf chemistry have been inconclusive because assays used have focused on broad groups of compounds such as “total” phenolics. In this study we have conducted no-choice feeding trials with two arboreal mammalian folivores, the common ringtail possum (Pseudocheirus peregrinus) and the koala (Phascolarctos cinereus), to measure deterrency of individual trees of two species of Eucalyptus, E. ovata and E. viminalis. Average daily intakes of E. ovata foliage by common ringtail possums ranged from 2.5 to 50 g kg−0.75 body mass. Koala intakes of foliage from the same individual trees ranged from 22.4 to 36.3 g kg−0.75 body mass. When fed foliage from different individual E. viminalis trees, common ringtail possums ate between 1.26 and 6.28 g kg−0.75 body mass while koalas ate from 14.3 to 45.9 g kg−0.75 body mass. Correlative analyses showed no relationships between feeding and several measures of nutritional quality, nor with total phenolics or condensed tannins. They did, however, identify two groups of plant secondary metabolites that may cause deterrency: terpenes, and a defined group of phenolic compounds, the diformylphloroglucinols (DFPs). Further bioassay experiments with common ringtail possums showed that only the DFPs could cause the effects seen with the foliage experiments at concentrations similar to those found in the leaves. We argue that, when in sufficiently high concentrations, DFPs determine the level of food intake by these animals irrespective of other questions of nutritional quality of the leaves. Received: 20 October 1997 / Accepted: 23 March 1998  相似文献   

10.
采用分光光度法测定了额济纳绿洲胡杨(Populus euphratica)的披针形叶、卵圆形叶、嫩枝、枝(D《5 mm)、枝(5~10 mm)、主干树皮、根(D《2 mm)、根(2~5 mm)和根(5~10 mm)9类器官中的总酚、黄酮和缩合单宁含量.结果表明,总酚含量较高的器官为皮(27.93 mg/s),叶、根、枝中总酚含量分别为17.64 mg/g(两类叶均值)、16.72mg/g(三类根均值)、12.19 mg/g(三类枝均值);黄酮含量较高的器官为皮(51.30 mg/g),叶、根、枝中黄酮含量分别为28.45 mg/g(两类叶均值)、39.99 mg/g(三类根均值)、23.67 mg/g(三类枝均值);根中缩合单宁含量较高,三类根均值为22.10 mg/g,皮、叶、枝中缩合单宁含量分别为8.41 mg/g、4.03 mg/g(两类叶均值)、4.47 mg/g(三类枝均值).披针形叶和卵圆形叶中酚类物质含量没有显著性差异(P》0.05);随着枝不断成熟,嫩枝、枝(D《5mm)、枝(5~10mm)中酚类物质逐渐减少;随着根直径减少,根中缩合单宁逐渐增加,细根(D《2mm)中的缩合单宁含量最高(25.95 mg/g).分析胡杨各器官中酚类物质含量与土壤水分的关系,结果表明卵圆形叶中酚类物质含量与土壤水分含量成显著负相关关系(P《0.05,总酚:r=-0.949;黄酮:r=-0.923;缩合单宁:r=-0.944).研究揭示了极端干旱地区胡杨各器官中酚类物质的变化规律,及其与环境因子的相互作用关系.  相似文献   

11.
Effect of sink region cooling on translocation of photosynthate   总被引:4,自引:4,他引:0       下载免费PDF全文
Geiger DR 《Plant physiology》1966,41(10):1667-1672
The effect of metabolic inhibition of the sink tissues on translocation of 14C-labeled photosynthate was studied by cooling part or all of the sink region in a translocating sugar beet plant (Beta vulgaris L. var Klein Wanzleben).  相似文献   

12.
The effects of elevated atmospheric CO2 and increased wet N deposition on leaf quality and insect herbivory were evaluated in nine model ecosystems composed of 7-year-old spruce trees (Picea abies) and three understorey species established on natural forest soil. Each model ecosystem was grown in a simulated montane climate, and was exposed to one of three CO2 concentrations (280, 420, and 560 μl l−1), and to one of three levels of N deposition (0, 30, and 90 kg ha−1 year−1) for 3 years. In the 3rd year of the experiment second to third instars of the nun moth (Lymantria monacha) were allowed to feed directly on current-year needles of top canopy branches of each tree for 12 days. Specific leaf area (SLA), water content, and N concentration decreased in needles exposed to elevated CO2, whereas the concentrations of starch, condensed tannins, and total phenolics increased. Increased N deposition had no significant effect on SLA, and water content, but the concentrations of starch, condensed tannins, and total phenolics decreased, and sugar and N concentrations increased. Despite higher relative consumption rates (RCRs) larvae consumed 33% less N per unit larval biomass and per day at the two high CO2 treatments, compared to those feeding on 280 μl l−1-needles, but they maintained similar N accumulation rates due to increased N utilization efficiencies (NUE). However, over the 12-day experimental period larvae gained less N overall and reached a 35% lower biomass in the two high-CO2 treatments compared to those at 280 μl l−1. The effects of increased N deposition on needle quality and insect performance were generally opposite to those of CO2 enrichment, but were lower in magnitude. We conclude that altered needle quality in response to elevated CO2 will impair the growth and development of L. monacha larvae. Increasing N deposition may mitigate these effects, which could lead to altered insect herbivore distributions depending on regional patterns of N deposition. Received: 8 June 1998 / Accepted: 27 October 1998  相似文献   

13.
The influence of source and sink temperature on leaf net C exchange rate (NCER), export, and partitioning in the C3 monocotyledon Alstroemeria sp. cv. Jacqueline were examined. Leaf (i.e. source) temperature was varied between 12 and 35°C while source leaves were exposed to photorespiratory and nonphotorespiratory conditions during a 2-h steady-state 14CO2 labelling period. Between 12 and 20°C, at ambient CO2 and O2, leaf NCER and export were similar with maximum rates of 9.71 ± 0.51 and 3.06 ± 0.36 μmol C m-2 s-1, respectively. Both NCER and export decreased above 20°C. At 35°C NCER was 30% of the rate at 20°C, but export was totally inhibited. Between 12 and 35°C, at the end of the 2-h feeding period, 14C was partitioned in the leaf as ethanol insolubles (3–10%), H2O solubles (88–92%), and chloroform solubles (2–8%). However, above 25°C, less 14C was recovered in the starch fraction and more in the sugar fractions. At all temperatures, 86 to 94% of the labelled sugars was 14C-sucrose. In nonphotorespiratory conditions (i.e. 1 800 μI I-1 CO2 and 2% O2). NCER and export were higher than the rates obtained at ambient CO2 and O2 at each temperature. Carbon dioxide enrichment sustained high NCER and export rates even at 35°C, Although CO2 enrichment increased partitioning of 14C into starch, starch synthesis at 35°C was markedly reduced. Cooling the root-zone mass (i.e. a dominant sink) to 10°C, which simulated the commercial practice used to induce flowering, had no significant effect on source leaf NCER and export rates either during a 2-h steady-state labelling period or subsequently during a 21-h light-dark chase period. Furthermore, partitioning of 14C among leaf products at the end of the feed-chase period was not affected. Additional pulse and chase experiments using 11CO2 fed to source leaves of control and root-cooled plants showed that there was no difference in the direction of movement of 11C-assimilates towards the flower or the root zone as a consequence of root cooling. Together, the data indicate that changing source strength, by manipulating photosynthesis and photorespiration, by varying the leaf temperature had a more profound effect on leaf export than manipulating sink activity.  相似文献   

14.
We studied phenolic metabolism and plant growth in birch seedlings at the beginning of their development by inhibiting phenylalanine ammonia lyase (PAL), which is the first committed step in phenylpropanoid metabolism. Betula pubescens (Ehrh.) seeds were germinated in inhibitor-free media and the seedlings were transferred to hydroponic culture at the cotyledon stage. They were 6 days old at the start of the experiment, which lasted for 3 weeks. PAL activity was inhibited by three different concentrations of 2-aminoindane-2-phosphonic acid monohydrate (AIP) in the growing media. At the end of 3 weeks, phenolics in all plant parts (roots, stem, cotyledons, first, second and third true leaves) were determined. AIP inhibited strongly the accumulation of phenolic acids, salidroside, rhododendrins, ellagitannins and their precursors, flavan-3-ols, and soluble condensed tannins. The accumulation of lignin and flavonol glycoside derivatives was moderately inhibited. The accumulation of flavonol glycosides, such as quercetin glycosides and kaempferol glycosides, was not generally inhibited, even in leaves that emerged during the experiment, while the accumulation of insoluble condensed tannins was inhibited only slightly and not in all plant parts. This suggests that flavonol glycosides, which may have a UV-B protective role, and insoluble condensed tannins, which may have structural functions, are prioritized in seedling development. Inhibition of PAL with AIP decreased seedling growth and possible reasons for this are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Quaking aspen (Populus tremuloides) exhibits striking intraspecific variation in concentrations of phenolic glycosides, compounds that play important roles in mediating interactions with herbivorous insects. This research was conducted to assess the contribution of genetic variation to overall phenotypic variation in aspen chemistry and interactions with gypsy moths (Lymantria dispar) and forest tent caterpillars (Malacosoma disstria). Thirteen aspen clones were propagated from field-collected root material. Insect performance assays, measuring survival, development, growth, and food utilization indices, were conducted with second and/or fourth instars. Leaf samples were assayed for water, nitrogen, total nonstructural carbohydrates, condensed tannins, and phenolic glycosides. Results showed substantial among-clone variation in the performance of both insect species. Chemical analyses revealed significant among-clone variation in all foliar constituents and that variation in allelochemical contents differed more than variation in primary metabolites. Regression analyses indicated that phenolic glycosides were the dominant factor responsible for among-clone variation in insect performance. We also found significant genetic trade-offs between growth and defense among aspen clones. Our results suggest that genetic factors are likely responsible for much of the tremendous phenotypic variation in secondary chemistry exhibited by aspen, and that the genetic structure of aspen populations may play important roles in the evolution of interactions with phytophagous insects. Received: 14 May 1996 / Accepted: 29 January 1997  相似文献   

16.
Claudia Grimmer  Ewald Komor 《Planta》1999,209(3):275-281
Castor bean (Ricinus communis L.) plants were grown for 5–7 weeks in a controlled environment at 350 μl l−1 or 700 μl l−1 CO2. Carbon assimilation, assimilate deposition, dark respiration and assimilate mobilization were measured in leaves 2, 3 and 4 (counted from the base of the plant), and a balance sheet of carbon input and export was elaborated for both CO2 concentrations. Carbon dioxide assimilation was nearly constant over the illumination period, with only a slight depression occurring at the end of the day in mature source leaves, not in young source leaves. Assimilation was ca. 40% higher at 700 μl l−1 than at 350 μl l−1 CO2. The source leaves increased steadily in weight per unit area during the first 3 weeks, more at 700 μl l−1 than at 350 μl l−1 CO2. On top of an irreversible weight increase, there was a large gain in dry weight during the day, which was reversed during the night. This reversible weight gain was constant over the life time of the leaf and ca. 80% higher at 700 μl l−1 than at 350 μl l−1. Most of it was due to carbohydrates. The carbon content (as a percentage) was not altered by the CO2 treatment. Respiration was 25% higher in high-CO2 plants when based on leaf area, but the same when based on dry weight. The rate of carbon export via the phloem was the same during the daytime in plants grown at 350 μl l−1 and 700 μl l−1 CO2. During the night the low-CO2 plants had only 50% of the daytime export rate, in contrast to the high-CO2 plants which maintained the high export rate. It was concluded that the phloem loading system is saturated during the daytime in both CO2 regimes, whereas during the night the assimilate supply is reduced in plants in the normal CO2 concentration. Two-thirds of the carbon exported from the leaves was permanently incorporated as plant dry matter in the residual plant parts. This “assimilation efficiency” was the same for both CO2 regimes. It is speculated that under 350 μl l−1 CO2 the growing Ricinus plant operates at sink limitation during the day and at source limitation during the night. Received: 2 February 1999 / Accepted: 19 April 1999  相似文献   

17.
Physiological and transport data are presented in support of a symplastic pathway of phloem unloading in importing leaves of Beta vulgaris L. (`Klein E multigerm'). The sulfhydryl reagent p-chloromercuribenzene sulfonic acid (PCMBS) at concentration of 10 millimolar inhibited uptake of exogenous [14C]sucrose by sink leaf tissue over sucrose concentrations of 0.1 to 5.0 millimolar. Inhibited uptake was 24% of controls. The same PCMBS treatment did not affect import of 14C-label into sink leaves during steady state labeling of a source leaf with 14CO2. Lack of inhibition of import implies that sucrose did not pass through the free space during unloading. A passively transported xenobiotic sugar, l-[14C]glucose, imported by a sink leaf through the phloem, was evenly distributed throughout the leaf as seen by whole-leaf autoradiography. In contrast, l-[14C]glucose supplied to the apoplast through the cut petiole or into a vein of a sink leaf collected mainly in the vicinity of the major veins with little entering the mesophyll. These patterns are best explained by transport through the symplast from phloem to mesophyll.  相似文献   

18.
The effects of different phenolic compound concentrations on the fatty acid composition of Lactobacillus plantarum isolated from traditional home-made olive brines were determined. Increasing amounts of caffeic and ferulic acids induced a gradual increase in the amounts of myristic, palmitoleic, stearic and 9,10-methylenehexadecanoic (C17Δ, where Δ represents the cyclopropane group) acid with a concomitant decrease of lactobacillic acid (C19Δ). On the other hand, the addition of tannins induced an increase in the C19Δ level at the expense of vaccenic acid content. The presence of acidic phenols and tannins also affected bacterial growth, inducing the most obvious effect with tannin at 1 g l−1. Received: 1 July 1997 / Received revision: 9 September 1997 / Accepted: 15 September 1997  相似文献   

19.
Potato plants (Solanum tuberosum L.) were grown in water culture.About 14 d after tuber initiation no significant differenceswere found between apical and basal tuber parts in 14C-uptakeand partitioning into various fractions from 14C-labelled photosynthate.Thus, the fresh weight of these tubers could be used as a parameterfor the sink size. The 14C-content per tuber (sink strength)20 h after 14CO2-supply to the foliage was significantly correlatedwith the tuber fresh weight. No correlation was found betweenthe 14C-concentration of the tuber (sink activity; ct. ming fr. wt.) and tuber fresh weight. Consequently, tuberfresh weight (sink size) per se must have been a factor whichinfluenced sink strength. Stolon parameters characterizing theirgrowth prior to tuber initiation (e.g. stolon volume) and theircapacity for photosynthate transport (diameter, length) weremeasured at the time of tuber initiation. Significant correlationswere found between these stolon parameters and subsequent growthof individual tubers. Anatomical studies on the proportion ofvarious tissues in the cross sectional area of stolons supportthe idea of a negative relation between growth of individualtubers and transport resistance in the phloem of the stolons.It is concluded that in the initial phase of tuber growth, mainlyfactors outside of the tuber determine its growth rate. In laterstages of tuber growth, when the sink strength increases, thecompeting strength of individual tubers for photosynthate isdominated mainly by factors within the tuber itself, such astheir sink size and sink activity. Key words: Potato tuber, sink size, tuber initiation, transport resistance  相似文献   

20.
Antioxidant activities of both cells and extracellular substances were evaluated in 12 soil-isolated strains of microalgae according to FRAP and DPPH-HPLC assays. Their total phenolic contents were also determined by Folin–Ciocalteu method. Extractions were performed with hexane, ethyl acetate, and water. The results of FRAP assay showed that algal cells contained considerable amounts of antioxidants from 0.56 ± 0.06 to 31.06 ± 4.00 μmol Trolox g−1 for Microchaete tenera hexane extract and Chlorella vulgaris water extract, respectively. In water fractions of extracellular substances, the antioxidants were from 1.30 ± 0.15 μmol Trolox g−1 for Fischerella musicola to 73.20 ± 0.16 μmol Trolox g−1 for Fischerella ambigua. Also, DPPH-HPLC assay represented high antioxidant potential of water fractions. The measured radical-scavenging activities of the studied microalgae were at least 0.15 ± 0.02 in Nostoc ellipsosporum cell mass to a maximum of 109.02 ± 8.25 in C. vulgaris extracellular substance. The amount of total phenolic contents varied in different strains of microalgae and ranged from zero in hexane extract to 19.15 ± 0.04 mg GAE g−1 in C. vulgaris extracellular water fraction. Significant correlation coefficients between two measured parameters indicated that phenolic compounds were a major contributor to the microalgal antioxidant capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号