首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ATP-dependent transport of 22Na+ into liposomes reconstitutedfrom plasma membrane proteins of Heterosigma akashiwo was examined.The apparent Km values for transport of Na+ were 400 µMfor ATP and 7 mM for Na+. ATP-dependent transport of 22Na+ wasnot inhibited by a protonophore or a membrane-permeable cationbut was inhibited by an inhibitor of P-type ATPases. (Received October 2, 1995; Accepted February 1, 1996)  相似文献   

2.
Brain edema that forms during the early stages of stroke involves increased transport of Na+ and Cl across an intact blood-brain barrier (BBB). Our previous studies have shown that a luminal BBB Na+-K+-Cl cotransporter is stimulated by conditions present during ischemia and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema formation in the rat middle cerebral artery occlusion model of stroke. The present study focused on investigating the effects of hypoxia, which develops rapidly in the brain during ischemia, on the activity and expression of the BBB Na+-K+-Cl cotransporter, as well as on Na+-K+-ATPase activity, cell ATP content, and intracellular volume. Cerebral microvascular endothelial cells (CMECs) were assessed for Na+-K+-Cl cotransporter and Na+-K+-ATPase activities as bumetanide-sensitive and ouabain-sensitive 86Rb influxes, respectively. ATP content was assessed by luciferase assay and intracellular volume by [3H]-3-O-methyl-D-glucose and [14C]-sucrose equilibration. We found that 30-min exposure of CMECs to hypoxia ranging from 7.5% to 0.5% O2 (vs. 19% normoxic O2) significantly increased cotransporter activity as did 7.5% or 2% O2 for up to 2 h. This was not associated with reduction in Na+-K+-ATPase activity or ATP content. CMEC intracellular volume increased only after 4 to 5 h of hypoxia. Furthermore, glucose and pyruvate deprivation increased cotransporter activity under both normoxic and hypoxic conditions. Finally, we found that hypoxia increased phosphorylation but not abundance of the cotransporter protein. These findings support the hypothesis that hypoxia stimulation of the BBB Na+-K+-Cl cotransporter contributes to ischemia-induced brain edema formation. edema; blood-brain barrier; bumetanide; cell volume  相似文献   

3.
Sodium efflux from 22Na+-loaded root tips root tips of Hordeumvulgare L. was markedly increased by replacing 10mM Na2SO4 inthe washing solution by K2SO4 with the same electrical conductivity.This increase was inhibited by both an uncoupler and an inhibitorof oxidative phosphorylation but not by ouabain. Potassium ionsdid not enhance Na+ efflux in the presence of a rapidly absorbedcounter anion, such as Cl, instead of . Efflux of 22Na+ could also be enhanced by a low pH in theabsence of K+; this was prevented by uncouplers, but not byan inhibitor of the mitochondrial ATPase. It seems that K+ indirectly enhances Na+ efflux. It is suggestedthat metabolic K+ uptake in excess of the counter anion resultsin a proton gradient across the plasmalemma (acid outside) inducingH+/Na+ antiport.  相似文献   

4.
The Na+-K+ pumps in the transverse tubular (T) system of a muscle fiber play a vital role keeping K+ concentration in the T-system sufficiently low during activity to prevent chronic depolarization and consequent loss of excitability. These Na+-K+ pumps are located in the triad junction, the key transduction zone controlling excitation-contraction (EC) coupling, a region rich in glycolytic enzymes and likely having high localized ATP usage and limited substrate diffusion. This study examined whether Na+-K+ pump function is dependent on ATP derived via the glycolytic pathway locally within the triad region. Single fibers from rat fast-twitch muscle were mechanically skinned, sealing off the T-system but retaining normal EC coupling. Intracellular composition was set by the bathing solution and action potentials (APs) triggered in the T-system, eliciting intracellular Ca2+ release and twitch and tetanic force responses. Conditions were selected such that increased Na+-K+ pump function could be detected from the consequent increase in T-system polarization and resultant faster rate of AP repriming. Na+-K+ pump function was not adequately supported by maintaining cytoplasmic ATP concentration at its normal resting level (8 mM), even with 10 or 40 mM creatine phosphate present. Addition of as little as 1 mM phospho(enol)pyruvate resulted in a marked increase in Na+-K+ pump function, supported by endogenous pyruvate kinase bound within the triad. These results demonstrate that the triad junction is a highly restricted microenvironment, where glycolytic resynthesis of ATP is critical to meet the high demand of the Na+-K+ pump and maintain muscle excitability. muscle fatigue; sodium-potassium-adenosinetriphosphatase; excitation-contraction coupling; T-system; excitability  相似文献   

5.
Current models of the Na+-K+-ATPase reaction cycle have ATP binding with low affinity to the K+-occluded form and accelerating K+ deocclusion, presumably by opening the inside gate. Implicit in this situation is that ATP binds after closing the extracellular gate and thus predicts that ATP binding and extracellular cation binding to be mutually exclusive. We tested this hypothesis. Accordingly, we needed a cation that binds outside and not inside, and we determined that tetrapropylammonium (TPA) behaves as such. TPA competed with K+ (and not Na+) for ATPase, TPA was unable to prevent phosphoenzyme (EP) formation even at low Na+, and TPA decreased the rate of EP hydrolysis in a K+-competitive manner. Having established that TPA binding is a measurement of extracellular access, we next determined that TPA and inorganic phosphate (Pi) were not mutually exclusive inhibitors of para-nitrophenylphosphatase (pNPPase) activity, implying that when Pi is bound, the transport site has extracellular access. Surprisingly, we found that ATP and TPA also were not mutually exclusive inhibitors of pNPPase activity, implying that when the cation transport site has extracellular access, ATP can still bind. This is consistent with a model in which ATP speeds up the conformational changes that lead to intracellular or extracellular access, but that ATP binding is not, by itself, the trigger that causes opening of the cation site to the cytoplasm. quaternary ammonium; Dixon plot; P-type adenosine triphosphatase; inorganic phosphate  相似文献   

6.
Amiloride-sensitive, epithelial Na+ channel (ENaC)-mediated, active absorption of Na+ is elevated in the airway epithelium of cystic fibrosis (CF) patients, resulting in excess fluid removal from the airway lumen. This excess fluid/volume absorption corresponds to CF transmembrane regulator-linked defects in ENaC regulation, resulting in the reduced mucociliary clearance found in CF airways. Herein we show that INO-4995, a synthetic analog of the intracellular signaling molecule, D-myo-inositol 3,4,5,6-tetrakisphosphate, inhibits Na+ and fluid absorption across CF airway epithelia, thus alleviating this critical pathology. This conclusion was based on electrophysiological studies, fluid absorption, and 22Na+ flux measurements in CF airway epithelia, contrasted with normal epithelia, and on electrophysiological studies in Madin-Darby canine kidney cells and 3T3 cells overexpressing ENaC. The effects of INO-4995 were long-lasting, dose-dependent, and more pronounced in epithelia from CF patients vs. controls. These findings support preclinical development of INO-4995 for CF treatment and demonstrate for the first time the therapeutic potential of inositol polyphosphate derivatives. epithelial Na+ channels; fluid absorption  相似文献   

7.
Acid-base effects on intestinal Na(+) absorption and vesicular trafficking   总被引:2,自引:0,他引:2  
We examined for vesicular traffickingof the Na+/H+ exchanger (NHE) in pH-stimulatedileal and CO2-stimulated colonic Na+absorption. Subapical vesicles in rat distal ileum were quantified bytransmission electron microscopy at ×27,500 magnification. Internalization of ileal apical membranes labeled withFITC-phytohemagglutinin was assessed using confocal microscopy, andpH-stimulated ileal Na+ absorption was measured afterexposure to wortmannin. Apical membrane protein biotinylation of ilealand colonic segments and Western blots of recovered proteins wereperformed. In ileal epithelial cells incubated inHCO/Ringer or HEPES/Ringer solution, the number ofsubapical vesicles, the relative quantity of apical membrane NHEisoforms 2 and 3 (NHE2 and NHE3, respectively), and apical membranefluorescence under the confocal microscope were not affected by pHvalues between 7.1 and 7.6. Wortmannin did not inhibit pH-stimulatedileal Na+ absorption. In colonic epithelial apicalmembranes, NHE3 protein content was greater at aPCO2 value of 70 than 21 mmHg, was internalized when PCO2 was reduced, and was exocytosed whenPCO2 was increased. We conclude that vesicletrafficking plays no part in pH-stimulated ileal Na+absorption but is important in CO2-stimulated colonicNa+ absorption.

  相似文献   

8.
Na+ fluxes in Chara under salt stress   总被引:2,自引:0,他引:2  
The influx and efflux of Na+ across the plasma membrane of Characorallina and Chara longifolia were examined under mild saltstress conditions. Na+ influx was found to be rapid in bothspecies with the freely exchangeable cytoplasmic Na+ cominginto isotopic equilibrium with external 22Na+ within 1 h ofexposure to isotope. Cytoplasmlc Na+ concentration and Na+ influxwere greater in C. corallina than in C. longifolla under thesame conditions. Na+ influx across the tonoplast was much lowerthan the flux across the plasma membrane. Na+ efflux was stimulatedat pH 5 relative to pH 7 by 218% in C. coralllna and 320% inC. longifolia. In both species externally applied Li+ inhibitedNa+ efflux at pH 5 but not at pH 7. Na+ etflux was not significantlyinhibited by amiloride. Key words: Na+ influx, Na+ efflux, Na+/H+ antiport, Chara  相似文献   

9.
The effects of a new, potent, and selective inhibitor of the Na+/Ca2+ exchange, SEA-0400 (SEA), on steady-state outward (forward exchange), inward (reverse exchange), and Ca2+/Ca2+ transport exchange modes were studied in internally dialyzed squid giant axons from both the extra- and intracellular sides. Inhibition by SEA takes place preferentially from the intracellular side of the membrane. Its inhibition has the following characteristics: it increases synergic intracellular Na+ (Nai+) + intracellular H+ (Hi+) inactivation, is antagonized by ATP and intracellular alkalinization, and is enhanced by intracellular acidification even in the absence of Na+. Inhibition by SEA is still present even after 1 h of its removal from the experimental solutions, whereas removal of the cointeracting agents of inhibition, Nai+ and Hi+, even in the continuous presence of SEA, releases inhibition, indicating that SEA facilitates the reversible attachment of the natural Hi+ and Nai+ synergic inhibitors. On the basis of a recent model of squid Na+/Ca2+ exchange regulation (DiPolo R and Beaugé L. J Physiol 539: 791–803, 2002), we suggest that SEA acts on the Hi+ + Nai+ inactivation process and can interact with the Na+-free and Na+-bound protonized carrier. Protection by ATP concurs with the antagonism of the nucleotide by Hi+ + Nai+ synergic inhibition. ionic-metabolic interactions  相似文献   

10.
Effect of Exogenous Glycinebetaine on Na+ Transport in Barley Roots   总被引:5,自引:0,他引:5  
Ahmad, N., Wyn Jones, R. G. and Jeschke, W. D. 1987. Effectof exogenous glycinebetaine on Na+ transport in barley roots.—J.exp. Bot. 38: 913–921. A comparison has been made of the kinetics of 22Na+ uptake intoexcised barley roots and roots pre-loaded with glycinebetaine.The elevated intracellular glycinebetaine or a metabolic consequencethereof increased the Na+ influx, and the effect was relatedto the level of internal glycinebetaine and or Na+ [Cl].The quasi-steady-state Na+ influx at the tonoplast rather thanthe plasmalemma influx was apparently influenced by glycinebetaineloading. The tonoplast fluxes and vacuolar Na+ content wereconsistently higher in glycinebetaine-loaded roots than unloadedroots. A membrane-modifying role of glycinebetaine in relationto ion compartmentation is discussed. Key words: Excised roots, glycinebetaine, Na+, ion fluxes, barley  相似文献   

11.
Effect of in vivo corticosteroids on Na+ transport across airway epithelia   总被引:3,自引:0,他引:3  
We haveinvestigated the role in vivo of mineralocorticoid and glucocorticoidhormones in regulating the rate of electrogenic amiloride-sensitiveNa+ absorption across murineairway tissue studied in vivo (nasal potential difference) and in vitro(Ussing chambers). We found that elevating the plasma aldosteroneconcentration 10-fold (low-Na+diet) had no significant effect on amiloride-sensitiveNa+ absorption across tracheal ornasal epithelia. High doses of dexamethasone for 1 wk likewise did notchange the rate of amiloride-sensitive Na+ absorption across airwayepithelia. In contrast, both hormonal manipulations elevated the rateof colonic Na+ absorption.Furthermore, adrenalectomy (both normal and cystic fibrosis mice) alsofailed to alter Na+ absorptionacross airway epithelia. We conclude that, in vivo, neither themineralocorticoid nor the glucocorticoid hormones significantlyregulate the rates of amiloride-sensitive electrogenic Na+ absorption across airwayepithelia in the adult mouse.

  相似文献   

12.
The mechanism of light-dependent active transport of pyruvatein C4 mesophyll chloroplasts has not been clarified, particularlyin Na+-type C4 species, in which the pyruvate uptake into mesophyllchloroplasts is enhanced by illumination or by making a Na+gradient (Na+-jump) across the envelope in the dark. We re-investigatedhere the effect of Na+ on the active transport of pyruvate inmesophyll chloroplasts of Panicum miliaceum, a Na+-type C4 species,by comparing the rate of pyruvate uptake at various externalpHs under four conditions; in the light and dark together with/withoutNa+-jump: (1) At neutral pH, the rate of pyruvate uptake inthe dark was enhanced by Na+-jump but scarcely by illumination.(2) While the enhancement effect by Na+-jump was independentof external pH, that by illumination increased greatly at pHover 7.4, and the effects of light and Na+ at the alkaline pHwere synergistic. (3) The light-enhanced pyruvate uptake wasrelated to stromal alkalization induced by illumination. Infact, pyruvate uptake was induced by H+-jump in the medium frompH 8.0 to 6.7. (4) Stromal pH was lowered by the addition ofK+-pyruvate and more by Na+-pyruvate into the medium at pH 7.8in the light. (5) However, the pH and ATP levels in the stromawere not affected by Na+-jump. Thus, we discussed possibility that besides pyruvate/Na+ cotransportat neutral pH in the medium, pyruvate/H+ cotransport enhancedby the presence of Na+ operates in mesophyll chloroplasts ofNa+-type C4 species at alkaline medium. 1Present address: Biological Resources Division, Japan InternationalResearch Center for Agricultural Sciences (JIRCAS), Ministryof Agriculture, Forestry and Fisheries, 2-1 Ohwashi, Tsukuba,305 Japan  相似文献   

13.
Acid-base effects on intestinal Cl- absorption and vesicular trafficking   总被引:5,自引:0,他引:5  
In rat ileum and colon, apical membrane exchange and net Cl- absorption are stimulated by increases in PCO2 or . Because changes in PCO2 stimulate colonic Na+ absorption, in part, by modulating vesicular trafficking of the Na+/H+ exchanger type 3 isoform to and from the apical membrane, we examined whether changes in PCO2 affect net Cl- absorption by modulating vesicular trafficking of the exchanger anion exchanger (AE)1. Cl- transport across rat distal ileum and colon was measured in the Ussing chamber, and apical membrane protein biotinylation of these segments and Western blots of recovered proteins were performed. In colonic epithelial apical membranes, AE1 protein content was greater at PCO2 70 mmHg than at PCO2 21 mmHg but was not affected by pH changes in the absence of CO2. AE1 was internalized when PCO2 was reduced and exocytosed when PCO2 was increased, and both mucosal wortmannin and methazolamide inhibited exocytosis. Wortmannin also inhibited the increase in colonic Cl- absorption caused by an increase in PCO2. Increases in PCO2 stimulated ileal Cl- absorption, but wortmannin was without effect. Ileal epithelial apical membrane AE1 content was not affected by PCO2. We conclude that CO2 modulation of colonic, but not ileal, Cl- absorption involves effects on vesicular trafficking of AE1. PCO2; ileum; colon; anion exchanger 1; Na+/H+ exchanger type 3  相似文献   

14.
Net and Steady-state Cation Fluxes in Chlorella pyrenoidosa   总被引:2,自引:0,他引:2  
The addition of K+ to Chlorella cells grown so as to be abnormallyrich in Na+ induces a net Na+ efflux and a concomitant uptakeof K+. The net Na+ extrusion shows first-order kinetics withtime constants of about 10 min for illuminated cells, and occursat rates in the region of 10 to 15 pmol cm12 s. The correspondingtime course for the net K+ influx also approximates to first-orderkinetics but is more complicated because it not only involvesa K+/Na+ component but also a K+/H+ exchange. The H+ extrusionusually represents less than 20 per cent of the net cation movementand may account both in magnitude and in rate for the differencebetween K+ and Na+ movements. The magnitudes of the net K+ andNa+ fluxes differed from steady-state flux rates in normal highK+-containing cells being as much as 20 times greater for K+and over 100 times greater for Na+. There is some indicationthat K+ competes for Na+ entry into Na+-rich cells, suggestingthat both the Na+/Na+ and K+/Na+ exchanges may share the sameentry site. The K+/Na+ exchange rates saturate at low externalK+ concentrations; the half-maximum rate was at about 0.2 mMK+. The Na+/K+ exchange is sensitive to temperature and between0 and 25 °C an activation energy of about 25 k cal/molewas calculated from the Arrhenius equation.  相似文献   

15.
The relevance of nongenomic pathways to regulation of epithelial function by aldosterone is poorly understood. Recently, we demonstrated that aldosterone inhibits transepithelial HCO3 absorption in the renal medullary thick ascending limb (MTAL) through a nongenomic pathway. Here, we examined the transport mechanism(s) responsible for this regulation, focusing on Na+/H+ exchangers (NHE). In the MTAL, apical NHE3 mediates H+ secretion necessary for HCO3 absorption; basolateral NHE1 influences HCO3 absorption by regulating apical NHE3 activity. In microperfused rat MTALs, the addition of 1 nM aldosterone rapidly decreased HCO3 absorption by 30%. This inhibition was unaffected by three maneuvers that inhibit basolateral Na+/H+ exchange and was preserved in MTALs from NHE1 knockout mice, ruling out the involvement of NHE1. In contrast, exposure to aldosterone for 15 min caused a 30% decrease in apical Na+/H+ exchange activity over the intracellular pH range from 6.5 to 7.7, due to a decrease in Vmax. Inhibition of HCO3 absorption by aldosterone was not affected by 0.1 mM lumen Zn2+ or 1 mM lumen DIDS, arguing against the involvement of an apical H+ conductance or apical K+-HCO3 cotransport. These results demonstrate that aldosterone inhibits HCO3 absorption in the MTAL through inhibition of apical NHE3, and identify NHE3 as a target for nongenomic regulation by aldosterone. Aldosterone may influence a broad range of epithelial transport functions important for extracellular fluid volume and acid-base homeostasis through direct regulation of this exchanger. thick ascending limb; acid-base transport; epithelial Na+ transport; kidney  相似文献   

16.
九种常用杀虫剂对二化螟线粒体ATPase活力的抑制作用   总被引:3,自引:1,他引:2  
研究了二化螟Chilo suppressalis线粒体Na+-K+-ATPase和Ca2-Mg2-ATPase的生物化学性质以及9种常用杀虫剂对这两种酶活性的影响。结果表明, 二化螟线粒体Na+-K+-ATPase和Ca2-Mg2-ATPase的最适反应条件为pH值7.4,温度37℃。 Na+-K+-ATPase的米氏常数(Km)为0.42 mmol/L,最大反应速度(Vmax)为302.47 nmol/(min·mg) 。Ca2-Mg2-ATPase的Km为0.40 mmol/L,Vmax为128.04 nmol/(min·mg)。药剂浓度为1×10-4 mol/L时,5种菊酯类杀虫剂对离体ATPase活性抑制的顺序为:溴氰菊酯>联苯菊酯>百树菊酯>三氟氯氰菊酯和氟硅菊酯;对二化螟Na+-K+-ATPase的抑制率分别为40.12%、39.69%、27.27%、19.49%和18.71%;对Ca2-Mg2-ATPase的抑制率分别为29.27%、23.78%、19.88%、11.64%和14.34%。硫丹对二化螟Na+-K+-ATPase和Ca2-Mg2-ATPase的抑制率均为17.46%。甲胺磷和呋喃丹对Ca2-Mg2-ATPase的抑制率分别为27.16%和17.42%,对Na+-K+-ATPase则几乎没有抑制作用。实验结果还表明, 在1.6×10-7~1×10-4 mol/L的浓度范围内,上述9种杀虫剂对二化螟ATPase活性的抑制率存在明显的剂量-效应关系。  相似文献   

17.
Anabaena PCC 7119 showed higher rates of phosphate uptake whencells were under P-starvation. Phosphate uptake was energy-dependentas indicated the decrease observed when assays were performedin the dark or in the presence of inhibitors of photosyntheticelectron transport, energy transfer and adenosine triphosphataseactivity. Phosphate uptake was stimulated by Na+ both in P-sufficientcells and P-starved cells. Li+ and K+ acted as partial analoguesfor Na+. The Na+-stimulation of phosphate uptake followed Michaelis-Mentenkinetics, half-saturation (K) of phosphate uptake was reachedwith a Na+ concentration of 212 µM. The absence of Na+reduced the rates of phosphate uptake at all phosphate concentrationsassayed (1–20 µM). The maximum uptake rates (Vmax)decreased from 658 nmol P (mg dry wt)-1 h-1 in the presenceof Na+ to 149 nmol P (mg dry wt)-1 h-1 in the absence of Na+.The absence of Na+ did not change significantly the concentrationof phosphate required to reach half-saturation (K) (3.01 µMin the presence of Na+ vs 3.21 µM in the absence of Na+).In the presence of Na+ the rate of phosphate uptake was affectedby the pH; optimal rates were observed at pH 8. In the absenceof Na+ phosphate uptake was not affected by the pH; low rateswere observed in all cases. Monensin, an ionophore which collapsesNa+-gradients, reduced the rate of phosphate uptake in Na+-supplementedcells. These results indicated the existence of a Na+-dependentphosphate uptake in Anabaena PCC 7119. (Received September 8, 1992; Accepted November 17, 1992)  相似文献   

18.
SYNOPSIS. H+ V-ATPases are well known energizers of endomembranes;thus they play a key role in the acidification of vacuoles andvesicles. More recently it has become clear that they energizemany plasma membranes as well. In epithelial cells H+ V-ATPasesusually energize apical plasma membranes in the same sense thatNa+/K+ P-ATPases usually energize basolateral plasma membranes.Examples of four fundamental processes so energized will bereviewed—Na+ and Cl absorption by the frog skin,K+ secretion by the caterpillar midgut, fluid secretion by insectMalpighian tubules, and fluid absorption by insect ovarian folliclecells. It is likely that apical membranes of fresh water fishand other animals that live in media in which the concentrationof Na+ is low, are also energized by H+ V ATPases.  相似文献   

19.
Receptor-mediated inhibition of amiloride-sensitive sodium absorption was observed in primary and immortalized murine renal collecting duct cell (mCT12) monolayers. The addition of epidermal growth factor (EGF) to the basolateral bathing solution of polarized monolayers reduced amiloride-sensitive short-circuit current (Isc) by 15–25%, whereas the addition of ATP to the apical bathing solution decreased Isc by 40–60%. Direct activation of PKC with phorbol 12-myristate 13-acetate (PMA) and mobilization of intracellular calcium with 2,5-di-tert-butyl-hydroquinone (DBHQ) reduced amiloride-sensitive Isc in mCT12 monolayers by 46 ± 4% (n = 8) and 22 ± 2% (n = 8), respectively. Exposure of mCT12 cells to EGF, ATP, PMA, and DBHQ caused an increase in phosphorylation of p42/p44 (extracellular signal-regulated kinase; ERK1/2). Pretreatment of mCT12 monolayers with an ERK kinase inhibitor (PD-98059; 30 µM) prevented phosphorylation of p42/p44 and significantly reduced EGF, ATP, and PMA-induced inhibition of amiloride-sensitive Isc. In contrast, pretreatment of monolayers with a PKC inhibitor (bisindolylmaleimide I; GF109203x; 1 µM) almost completely blocked the PMA-induced decrease in Isc, but did not alter the EGF- or ATP-induced inhibition of Isc. The DBHQ-mediated decrease in Isc was due to inhibition of basolateral Na+-K+-ATPase, but EGF-, ATP-, and PMA-induced inhibition was most likely due to reduced apical sodium entry (epithelial Na+ channel activity). The results of these studies demonstrate that acute inhibition of amiloride-sensitive sodium transport by extracelluar ATP and EGF involves ERK1/2 activation and suggests a role for MAP kinase signaling as a negative regulator of electrogenic sodium absorption in epithelia. mitogen-activated protein kinase; epithelial ion transport; epithelial sodium channel  相似文献   

20.
The influence of salt status of root tissue of Zea mays on influxof 84Rb and 22Na and net accumulation of K+ and Na+ was studied.Low-salt roots were grown in 0.5 mM CaCl2, and high-salt rootsin 2.5 mM KC1 + 7.5 mM NaCl + 0.5 mM CaCl2. High-salt statusgreatly reduced (approx. 90 per cent inhibition) both 22Na and86Rb influxes in the low concentration range isotherm (i.e.at external concentrations below 1 mM). A less marked inhibitionwas observed in the higher concentration range isotherm (1–30mM), indicating that the uptake in this range is less affectedby the salt status of the tissue. During transition from low- to high-salt status there was anet accumulation of K+ but not of Na+ despite the presence ofa measurable 22Na+ influx at all times. The presence of a continuous22Na influx but no net accumulation implies an Na+ efflux frommaize root tissue. The results differ significantly from thosepreviously published for barley and a possible explanation ofthese differences is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号