首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In yeast, apoptotic cell death can be triggered by various factors such as H2O2, cell aging, or acetic acid. Yeast caspase (Yca1p) and cellular reactive oxygen species (ROS) are key regulators of this process. Here, we show that moderate doses of three virally encoded killer toxins (K1, K28, and zygocin) induce an apoptotic yeast cell response, although all three toxins differ significantly in their primary killing mechanisms. In contrast, high toxin concentrations prevent the occurrence of an apoptotic cell response and rather cause necrotic, toxin-specific cell killing. Studies with Deltayca1 and Deltagsh1 deletion mutants indicate that ROS accumulation as well as the presence of yeast caspase 1 is needed for apoptosis in toxin-treated yeast cells. We conclude that in the natural environment of toxin-secreting killer yeasts, where toxin concentration is usually low, induction of apoptosis might play an important role in efficient toxin-mediated cell killing.  相似文献   

2.
Necrosis has long been described as a consequence of physico-chemical stress and thus accidental and uncontrolled. Recently, it is becoming clear that necrotic cell death is as well controlled and programmed as caspase-dependent apoptosis, and that it may be an important cell death mode that is both pathologically and physiologically relevant. Necrotic cell death is not the result of one well-described signalling cascade but is the consequence of extensive crosstalk between several biochemical and molecular events at different cellular levels. Recent data indicate that serine/threonine kinase RIP1, which contains a death domain, may act as a central initiator. Calcium and reactive oxygen species (ROS) are main players during the propagation and execution phases of necrotic cell death, directly or indirectly provoking damage to proteins, lipids and DNA, which culminates in disruption of organelle and cell integrity. Necrotically dying cells initiate pro-inflammatory signalling cascades by actively releasing inflammatory cytokines and by spilling their contents when they lyse. Unravelling the signalling cascades contributing to necrotic cell death will permit us to develop tools to specifically interfere with necrosis at certain levels of signalling. Necrosis occurs in both physiological and pathophysiological processes, and is capable of killing tumour cells that have developed strategies to evade apoptosis. Thus detailed knowledge of necrosis may be exploited in therapeutic strategies.  相似文献   

3.
The receptor-interacting protein 1 (RIP1) kinase activity is necessary for death-receptor-induced necrotic cell death. Recently, it has been demonstrated that 'necrostatins' efficiently block tumor necrosis factor-induced necrotic cell death through the inhibition of RIP1 kinase activity. This discovery supports the concept that receptor-induced necrosis, just like apoptosis, is a controlled cellular process. In addition, necrostatins are becoming important tools for evaluating the contribution of necrotic cell death in experimental disease models.  相似文献   

4.
It is still enigmatic under which circumstances cellular demise induces an immune response or rather remains immunologically silent. Moreover, the question remains open under which circumstances apoptotic, autophagic or necrotic cells are immunogenic or tolerogenic. Although apoptosis appears to be morphologically homogenous, recent evidence suggests that the pre-apoptotic surface-exposure of calreticulin may dictate the immune response to tumor cells that succumb to anticancer treatments. Moreover, the release of high-mobility group box 1 (HMGB1) during late apoptosis and secondary necrosis contributes to efficient antigen presentation and cytotoxic T-cell activation because HMGB1 can bind to Toll like receptor 4 on dendritic cells, thereby stimulating optimal antigen processing. Cell death accompanied by autophagy also may facilitate cross priming events. Apoptosis, necrosis and autophagy are closely intertwined processes. Often, cells manifest autophagy before they undergo apoptosis or necrosis, and apoptosis is generally followed by secondary necrosis. Whereas apoptosis and necrosis irreversibly lead to cell death, autophagy can clear cells from stress factors and thus facilitate cellular survival. We surmise that the response to cellular stress like chemotherapy or ionizing irradiation, dictates the immunological response to dying cells and that this immune response in turn determines the clinical outcome of anticancer therapies. The purpose of this review is to summarize recent insights into the immunogenicity of dying tumor cells as a function of the cell death modality.  相似文献   

5.
BACKGROUND: There are two fundamental forms of cell death: apoptosis and necrosis. Molecular studies of cell death thus far favor a model in which apoptosis and necrosis share very few molecular regulators. It appears that apoptotic processes triggered by a variety of stimuli converge on the activation of a member of the caspase family, such as caspase 3, which leads to the execution of apoptosis. It has been suggested that blocking of caspase activation in an apoptotic process may divert cell death to a necrotic demise, suggesting that apoptosis and necrosis may share some upstream events. Activation of caspase is preceded by the release of mitochondrial cytochrome C. MATERIALS AND METHODS: We first studied cell death induced by beta-lapachone by MTT and colony-formation assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the PI staining procedure to determine the sub-G1 fraction and the Annexin-V staining for externalization of phophatidylserine. We next compared the release of mitochondrial cytochrome C in apoptosis and necrosis. Mitochondrial cytochrome C was determined by Western blot analysis. To investigate changes in mitochondria that resulted in cytochrome C release, the mitochondrial membrane potential (delta psi) was analyzed by the accumulation of rhodamine 123, a membrane-permeant cationic fluorescent dye. The activation of caspase in apoptosis and necrosis were measured by using a profluorescent substrate for caspase-like proteases, PhiPhiLuxG6D2. RESULTS: beta-lapachone induced cell death in a spectrum of human carcinoma cells, including nonproliferating cells. It induced apoptosis in human ovary, colon, and lung cancer cells, and necrotic cell death in four human breast cancer cell lines. Mitochondrial cytochrome C release was found in both apoptosis and necrosis. This cytochrome C release occurred shortly after beta-lapachone treatment when cells were fully viable by trypan blue exclusion and MTT assay, suggesting that cytochrome C release is an early event in beta-lapachone induced apoptosis as well as necrosis. The mitochondrial cytochrome C release induced by beta-lapachone is associated with a decrease in mitochondrial transmembrane potential (delta psi). There was activation of caspase 3 in apoptotic cell death, but not in necrotic cell death. This lack of activation of CPP 32 in human breast cancer cells is consistent with the necrotic cell death induced by beta-lapachone as determined by absence of sub-G1 fraction, externalization of phosphatidylserine. CONCLUSIONS: beta-lapachone induces either apoptotic or necrotic cell death in a variety of human carcinoma cells including ovary, colon, lung, prostate, and breast, suggesting a wide spectrum of anti-cancer activity in vitro. Both apoptotic and necrotic cell death induced by beta-lapachone are preceded by a rapid release of cytochrome C, followed by the activation of caspase 3 in apoptotic cell death but not in necrotic cell death. Our results suggest that beta-lapachone is a potential anti-cancer drug acting on the mitochondrial cytochrome C-caspase pathway, and that cytochrome C is involved in the early phase of necrosis.  相似文献   

6.
It is our intention to give the reader a short overview of the relationship between apoptosis and senescence in yeast mother cell-specific aging. We are studying yeast as an aging model because we want to learn something of the basic biology of senescence and apoptosis even from a unicellular eukaryotic model system, using its unrivalled ease of genetic analysis. Consequently, we will discuss also some aspects of apoptosis in metazoa and the relevance of yeast apoptosis and aging research for cellular (Hayflick type) and organismic aging of multicellular higher organisms. In particular, we will discuss the occurrence and relevance of apoptotic phenotypes for the aging process. We want to ask the question whether apoptosis (or parts of the apoptotic process) are a possible cause of aging or vice versa and want to investigate the role of the cellular stress response system in both of these processes. Studying the current literature, it appears that little is known for sure in this field and our review will therefore be, for a large part, more like a memorandum or a program for future research.  相似文献   

7.
Necrosis Is an Active and Controlled Form of Programmed Cell Death   总被引:6,自引:0,他引:6  
In all studies on programmed cell death (PCD) and apoptosis as its most showy form, this process was considered to be a paradigmatic antithesis to necrotic cell death. On one hand, a concept on necrosis as a cellular cataclysm, an uncontrolled and passive phenomenon, had been provoked by an enormous bulk of experimental data on its inducibility by super-physiological exposures. On the other hand, much attention was attracted to a rapidly expanding (from nematodes) field of genetic studies on PCD. However, the findings accumulated which suggested a likeness rather than the opposition of the necrotic and apoptotic forms of elimination of unwanted cells. 1. Very diverse pathophysiological exposures (stimuli, stresses), such as heat, ionizing radiation, pathogens, cytokines cause both forms of cell death in the same cell population. 2. Antiapoptotic mechanisms (e.g., Bcl-2) can protect cells from both necrotic and apoptotic destruction. 3. Biochemical interventions (e.g., with inhibitors of poly-(ADP-riboso)-polymerase) into the signal and executive mechanisms of PCD can change the choice of the cell death form. 4. During both necrosis and epigenetic programs of apoptotic cell death that need no macromolecular synthesis (e.g., the CD95-dependent death), the nucleus plays a passive role. Therefore, necrosis, similarly to apoptosis, is suggested to be a form of the programmed cell death. However, for the whole body the physiological consequences of apoptosis and necrosis are quite different. In the case of apoptosis, all constituents of the nucleus and cytoplasm are isolated by an undamaged membrane and then by phagocytes together with the membrane-bound eat me markers (phosphatidylserine, etc.). In other words, the elimination of the cell which has realized its apoptotic program remains virtually unnoticed by the body. In the case of necrosis, the cytoplasmic content released into the intercellular space provokes an inflammatory response, i.e., an activation of resident phagocytes and attraction of leukocytes into the necrosis zone. It is suggested that under pathophysiological conditions, the necrotic cell destruction should amplify and catalyze pathological processes. The experimental data available now suggest that a disturbance in the body of optimal balance between the necrotic and apoptotic forms of PCD should be a crucial factor in the development of various pathophysiological processes associated with inflammation (diabetes, arthritis) or with aging (atherosclerosis, neurodegenerative diseases).  相似文献   

8.
Caspase-independent apoptosis in yeast   总被引:1,自引:0,他引:1  
Apoptosis is a highly regulated cellular suicide program crucial for metazoan development. Yeast counterparts of central metazoan apoptotic regulators, such as metacaspase Yca1p, have been identified. In spite of the importance of Yca1p in yeast apoptotic process, many other factors such as Aif1p, orthologs of EndoG, AMID and cyclophilin D play important roles in caspase-independent apoptotic pathways. This review summarized recent progress about studies of various intrinsic and extrinsic apoptotic stimuli that may induce yeast cell death via caspase-independent apoptosis.  相似文献   

9.
Autophagy is the main process for bulk protein and organelle recycling in cells under extracellular or intracellular stress. Deregulation of autophagy has been associated with pathological conditions such as cancer, muscular disorders and neurodegeneration. Necrotic cell death underlies extensive neuronal loss in acute neurodegenerative episodes such as ischemic stroke. We find that excessive autophagosome formation is induced early during necrotic cell death in C. elegans. In addition, autophagy is required for necrotic cell death. Impairment of autophagy by genetic inactivation of autophagy genes or by pharmacological treatment suppresses necrosis. Autophagy synergizes with lysosomal catabolic mechanisms to facilitate cell death. Our findings demonstrate that autophagy contributes to cellular destruction during necrosis. Thus, interfering with the autophagic process may protect neurons against necrotic damage in humans.  相似文献   

10.
This study was undertaken to determine whether necrosis or apoptosis was the predominant mechanism responsible for gastric mucosal cellular death using the cell line known as AGS cells. Cells were exposed to various concentrations of deoxycholate (DC; 50-500 muM) for periods ranging from 30 min to 24 h. Lactic dehydrogenase (LDH) activity was used as a marker for necrotic cell death, whereas apoptosis was characterized by 4',6-diamidino-2 phenylindole staining, DNA gel electrophoresis, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and DNA-histone-associated complex formation. When cells were bathed in Hank's balanced salt solution, DC-induced necrosis was the predominant mechanism of cell death. In contrast, when cells were bathed in Ham's F-12 solution (a more physiologically relevant medium), no evidence of cytotoxicity (by LDH assay) was discernible when cells were exposed to DC (50-300 muM) for periods as long as 8 h; instead, clear evidence of apoptosis was noted that was time and dose dependent. When cells were exposed for 24 h to these DC concentrations, cytotoxicity was also present, indicating necrosis as well. Furthermore, acidification of the ambient environment also evoked a necrotic response when exposed to DC. We demonstrated that apoptosis induced by DC shows early activation of caspase-3 that is dependent on both receptor and mitochondrial pathways. Our results indicate that physiological concentrations of DC (50-300 muM) primarily induce cellular death through an apoptotic process. Only after prolonged exposure to DC or acidification of the bathing solution does necrosis also occur.  相似文献   

11.
Cortical neurons rapidly die in necrosis due to poor glucose uptake in the low-density (LD) culture under serum-free condition without any supplements. The scanning and transmission electron microscopical analyses characterized the necrosis by membrane disruption, mitochondrial swelling and loss of cytoplasmic electron density. High-glucose treatment delayed the neuronal death by suppressing necrosis, but induced apoptosis through increase in Bax levels, cytochrome c release, caspase-3 activation and DNA ladder formation. Although pyruvate as well as high glucose inhibited necrotic cell death and rapid decrease in cellular ATP levels, possibly related to decreased [(3)H]-2-deoxy glucose uptake under the serum-free condition, it did not induce apoptosis. Protein kinase C inhibitors blocked these changes related to the cell death mode switch. Several neurotrophic factors did not affect the necrosis, but potentiated high-glucose-induced survival activity, while inhibiting cytochrome c release. All these results suggest that high-glucose treatment causes neuronal cell death mode switch by inhibiting necrosis, while inducing apoptosis, which is prevented by neurotrophic factors.  相似文献   

12.
Copper and manganese induce yeast apoptosis via different pathways   总被引:1,自引:0,他引:1       下载免费PDF全文
Metal ions are essential as well as toxic to the cell. The mechanism of metal-induced toxicity is not well established. Here, for the first time we studied two essential nutritional elements, copper and manganese, for their apoptotic effects in yeast Saccharomyces cerevisiae. Although beneficial at subtoxic levels, we demonstrated that at moderately toxic levels, both metals induce extensive apoptosis in yeast cells. At even higher concentrations, necrosis takes over. Furthermore, we investigated the molecular pathways mediating Cu- and Mn-mediated apoptotic action. Mitochondria-defective yeast exhibit a much reduced apoptotic marker expression and better survival under Cu and Mn stress, indicating mitochondria are involved in both Cu- and Mn-induced apoptosis. Reactive oxygen species (ROS) are generated in high amounts in Cu- but not in Mn-induced cell death, and Cu toxicity can be alleviated by overexpression of superoxide dismutase 2, suggesting ROS mediate Cu but not Mn toxicity. Yeast metacaspase Yca1p is not involved in Cu-induced apoptosis, although it plays an important role in the Mn-induced process. A genetic screen identified Cpr3p, a yeast cyclophilin D homologue, as mediating the Cu-induced apoptotic program. Cpr3p mutant seems to eliminate Cu-induced apoptosis without affecting ROS production, while leaving necrosis intact. These results may provide important insight into a detailed understanding at the molecular and cellular level of metal toxicity and metal accumulation diseases.  相似文献   

13.
Diversity in the mechanisms of neuronal cell death   总被引:40,自引:0,他引:40  
Yuan J  Lipinski M  Degterev A 《Neuron》2003,40(2):401-413
Neurons may die as a normal physiological process during development or as a pathological process in diseases. The best-understood mechanism of neuronal cell death is apoptosis, which is regulated by an evolutionarily conserved cellular pathway that consists of the caspase family, the Bcl-2 family, and the adaptor protein Apaf-1. Apoptosis, however, may not be the only cellular mechanism that regulates neuronal cell death. Neuronal cell death may exhibit morphological features of autophagy or necrosis, which differ from that of the canonical apoptosis. This review evaluates the evidence supporting the existence of alternative mechanisms of neuronal cell death and proposes the possible existence of an evolutionarily conserved pathway of necrosis.  相似文献   

14.
The mechanism of tumor necrosis factor (TNF)-induced nonapoptotic cell death is largely unknown, although the mechanism of TNF-induced apoptosis has been studied extensively. In wild-type mouse embryonic fibroblast cells under a caspase-inhibited condition, TNF effectively induced cell death that morphologically resembled necrosis. In this study, we utilized gene knockout mouse embryonic fibroblasts cells and found that tumor necrosis factor receptor (TNFR) I mediates TNF-induced necrotic cell death, and that RIP, FADD, and TRAF2 are critical components of the signaling cascade of this TNF-induced necrotic cell death. Inhibitors of NF-kappaB facilitated TNF-induced necrotic cell death, suggesting that NF-kappaB suppresses the necrotic cell death pathway. JNK, p38, and ERK activation seem not to be required for this type of cell death because mitogen-activated protein kinase inhibitors did not significantly affect TNF-induced necrotic cell death. In agreement with the previous reports that the reactive oxygen species (ROS) may play an important role in this type of cell death, the ROS scavenger butylated hydroxyanisole efficiently blocked TNF-induced necrotic cell death. Interestingly, during TNF-induced necrotic cell death, the cellular ROS level was significantly elevated in wild type, but not in RIP(-/-), TRAF2(-/-), and FADD(-/-) cells. These results suggest that RIP, TRAF2, and FADD are crucial in mediating ROS accumulation in TNF-induced necrotic cell death.  相似文献   

15.
Many organisms are able to cause cell vacuolation, but it is unclear if this can be considered a step of apoptosis or necrosis, or a distinct form of cell death. In this study VERO cells were used to evaluate the relationship between vacuolation and cell death pattern caused by exotoxins produced by environmental strains of A. hydrophila. Cell damage has been evaluated morphologically as well as biochemically. Cytotoxic and vacuolating titres were strictly correlated and the vacuolation has to be considered an early indicator of cytotoxicity that causes cell apoptosis or necrosis in relation to the dose. Signs of apoptosis (chromatin condensation and blebbing) were observed at low concentration and TGase activity, referable to apoptosis induction, confirms morphological observations. In fact, putrescine incorporation was related both to cytotoxin concentration and time of incubation. Moreover, the observed doubling cells with necrotic features permit us to suppose that cell sensitivity and death pattern could change during the different phases of cellular cycle.  相似文献   

16.
Caspase-independent programmed cell death with necrotic morphology.   总被引:14,自引:0,他引:14  
Cell death is generally classified into two large categories: apoptosis represents active, programmed cell death, while necrosis represents passive cell death without underlying regulatory mechanisms. Recent progress revealed that caspases, a family of cysteine proteases, play a central role in the regulation of apoptosis. Unexpectedly, however, caspase inhibition occasionally turns the morphology of programmed cell death from apoptotic into necrotic without inhibiting death itself. In this article, we review different models of caspase-independent programmed cell death showing necrotic-like morphology, including our Ras-mediated caspase-independent cell death. Based on these findings, we suggest the existence of a necrotic-like cell death regulated by cellular intrinsic death programs distinct from that of apoptosis. Even though type 2 physiological cell death, or autophagic degeneration, has been recognized as a necrotic-like programmed cell death for a long time, the underlying molecular mechanisms have not been identified despite its physiological significance. This has been in part due to the previous absence of adequate caspase-independent cellular models to study, recent efforts may now help to elucidate these mechanisms.  相似文献   

17.
Programmed neuronal cell death is required during development to achieve the accurate wiring of the nervous system. However, genetic or accidental factors can lead to the premature, non-programmed death of neurons during adult life. Inappropriate death of cells in the nervous system is the cause of multiple neurodegenerative disorders. Pathological neuronal death can occur by apoptosis, by necrosis or by a combination of both. Necrotic cell death underlies the pathology of devastating neurological diseases such as neurodegenerative disorders, stroke or trauma. However, little is known about the molecular mechanisms that bring about necrotic cell death. Proteases play crucial roles in neuron degeneration by exerting both regulatory and catabolic functions. Elevated intracellular calcium is the most ubiquitous feature of neuronal death with the concomitant activation of cysteine calcium-dependent proteases, calpains. Calpains and lysosomal, catabolic aspartyl proteases, play key roles in the necrotic death of neurons. In this review, we survey the recent literature on the role of cysteine and aspartyl proteases in necrosis and neurodegeneration, aiming to delineate common proteolytic mechanisms mediating cellular destruction.  相似文献   

18.
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.  相似文献   

19.
过量皮质酮致原代培养的大鼠海马神经元死亡方式的研究   总被引:3,自引:0,他引:3  
目的和方法:以体外原代培养的大鼠海马神经元为研究对象,采用原位染色的方法,对不同剂量的皮质酮(CORT)致海马神经元死亡的方式进行研究。结果:在CORT作用下,海马神经元不仅会发生快速的坏死,而且还会发生慢性的凋亡;并且,随着CORT剂量增大和作用时间延长,海马神经元坏死和凋亡的发生率会随之增高。结论:海马神经细胞坏死和凋亡的发生,可能与CORT抑制神经元能量代谢的程度和增高神经元对谷氨酸神经毒性的敏感性有关。  相似文献   

20.
Apoptosis in yeast   总被引:1,自引:0,他引:1  
Apoptosis is a highly regulated cellular suicide program crucial for metazoan development. However, dysfunction of apoptosis also leads to several diseases. Yeast undergoes apoptosis after application of acetic acid, sugar- or salt-stress, plant antifungal peptides, or hydrogen peroxide. Oxygen radicals seem to be key elements of apoptotic execution, conserved during evolution. Furthermore, several yeast orthologues of central metazoan apoptotic regulators have been identified, such as a caspase and a caspase-regulating serine protease. In addition, physiological occurrence of cell death has been detected during aging and mating in yeast. The finding of apoptosis in yeast, other fungi and parasites is not only of great medical relevance but will also help to understand some of the still unknown molecular mechanisms at the core of apoptotic execution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号