首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Inhibition of c-Myc activity by ribosomal protein L11   总被引:2,自引:0,他引:2       下载免费PDF全文
Dai MS  Arnold H  Sun XX  Sears R  Lu H 《The EMBO journal》2007,26(14):3332-3345
  相似文献   

3.

Background

F-box only protein 8 (FBX8), a novel component of F-box proteins, is lost in several cancers and has been associated with invasiveness of cancer cells. However, its expression pattern and role in the progression of hepatocellular carcinoma remain unclear. This study investigated the prognostic significance of FBX8 in hepatocellular carcinoma samples and analyzed FBX8 function in hepatocellular carcinoma cells by gene manipulation.

Methodology

The expression of FBX8 was detected in 120 cases of clinical paraffin-embedded hepatocellular carcinoma tissues, 20 matched pairs of fresh tissues and five hepatocellular carcinoma cell lines by immunohistochemistry with clinicopathological analyses, real-time RT-PCR or Western blot. The correlation of FBX8 expression with cell proliferation and invasion in five HCC cell lines was analyzed. Moreover, loss of function and gain of function assays were performed to evaluate the effect of FBX8 on cell proliferation, motility, invasion in vitro and metastasis in vivo.

Conclusions

We found that FBX8 was obviously down-regulated in HCC tissues and cell lines (P<0.05). The FBX8 down-regulation correlated significantly with poor prognosis, and FBX8 status was identified as an independent significant prognostic factor. Over-expression of FBX8 decreased proliferation, migration and invasion in HepG2 and 97H cells, while knock-down of FBX8 in 7721 cells showed the opposite effect. FBX8 negatively correlated with cell proliferation and invasion in 7701, M3, HepG2 and 97H cell lines. In vivo functional assays showed FBX8 suppressed tumor growth and pulmonary metastatic potential in mice. Our results indicate that down-regulation of FBX8 significantly correlates with invasion, metastasis and poor survival in hepatocellular carcinoma patients. It may be a useful biomarker for therapeutic strategy and control in hepatocellular carcinoma treatment.  相似文献   

4.
5.
FBXO32 (MAFbx/Atrogin-1) is an E3 ubiquitin ligase that is markedly up-regulated in muscle atrophy. Although some data indicate that FBXO32 may play an important role in tumorigenesis, the molecular mechanism of FBXO32 in tumorigenesis has been poorly understood. Here, we present evidence that FBXO32 targets the oncogenic protein c-Myc for ubiquitination and degradation through the proteasome pathway. Phosphorylation of c-Myc at Thr-58 and Ser-62 is dispensable for FBXO32 to induce c-Myc degradation. Mutation of the lysine 326 in c-Myc reduces c-Myc ubiquitination and prevents the c-Myc degradation induced by FBXO32. Furthermore, overexpression of FBXO32 suppresses c-Myc activity and inhibits cell growth, but knockdown of FBXO32 enhances c-Myc activity and promotes cell growth. Finally, we show that FBXO32 is a direct downstream target of c-Myc, highlighting a negative feedback regulation loop between c-Myc and FBXO32. Thus, FBXO32 may function by targeting c-Myc. This work explains the function of FBXO32 and highlights its mechanisms in tumorigenesis.  相似文献   

6.
7.
8.
The ARF tumor suppressor protein acts in a checkpoint that guards against unscheduled cellular proliferation in response to oncogenic signaling. Deregulated expression of c-Myc induces ARF expression and apoptosis through the ARF-Mdm2-p53 axis. Our recent study reveals a new direct role for ARF in controlling c-Myc’s oncogenic activity that is independent of p53. ARF binds to and selectively impairs the transactivation ability of c-Myc while leaving its transrepression ability intact. Biologically, ARF prevents hyperproliferation and transformation caused by c-Myc and enhances c-Myc-induced apoptosis independently of p53. These new findings may be especially relevant for therapeutic strategies targeting c-Myc-induced cancers.  相似文献   

9.
10.
11.
Osteosarcoma is the most common primary tumor of the bone. It leads to many deaths because of its rapid proliferation and metastasis. Recent studies have shown that microRNAs are important gene regulators that are involved in various cancer-related processes. In this study, we found that miR-135b was down-regulated in both osteoscarcoma patient tumor tissues and osteoscarcoma cell lines in comparison to paired adjacent non-tumor bone tissue. We observed that a lower level of miR-135b was associated with metastasis. The ectopic expression of miR-135b markedly suppressed osteoscarcoma cell proliferation, migration, and invasion. Conversely, the inhibition of miR-135b expression dramatically accelerated cell proliferation, migration, and invasion. The forced expression of miR-135b in osteosarcoma cells resulted in a significant reduction in the protein level of c-Myc and repressed the activity of a luciferase reporter that contained the 3′-untranslated region of the c-Myc mRNA. These effects were abolished by the mutation of the predicted miR-135b-binding site, which indicates that c-Myc may be a miR-135b target gene. Moreover, the ectopic expression of c-Myc partially reversed the inhibition of cell proliferation and invasion that was caused by miR-135b. These data therefore suggest that miR-135b may function as a tumor suppressor to regulate osteosarcoma cell proliferation and invasion through a mechanism that targets the c-Myc oncogene. These findings indicate that miR-135b may play a role in the pathogenesis of osteosarcoma.  相似文献   

12.
13.
14.
15.
ARF6 GTPase is a conserved regulator of membrane trafficking and actin-based cytoskeleton dynamics at the leading edge of migrating cells. A key determinant of ARF6 function is the lifetime of the GTP-bound active state, which is orchestrated by GTPase-activating protein (GAP) and GTP-GDP exchanging factor. However, very little is known about the molecular mechanisms underlying ARF6-mediated cell migration. To systematically analyze proteins that regulate ARF6 activity during cell migration, we performed a proteomic analysis of proteins selectively bound to active ARF6 using mass spectrometry and identified a novel ARF6-specific GAP, ACAP4. ACAP4 encodes 903 amino acids and contains two coiled coils, one pleckstrin homology domain, one GAP motif, and two ankyrin repeats. Our biochemical characterization demonstrated that ACAP4 has a phosphatidylinositol 4,5-bisphosphate-dependent GAP activity specific for ARF6. The co-localization of ACAP4 with ARF6 occurred in ruffling membranes formed upon AIF(4) and epidermal growth factor stimulation. ACAP4 overexpression limited the recruitment of ARF6 to the membrane ruffles in the absence of epidermal growth factor stimulation. Expression of GTP hydrolysis-resistant ARF6(Q67L) resulted in accumulations of ACAP4 and ARF6 in the cytoplasmic membrane, suggesting that GTP hydrolysis is required for the ARF6-dependent membrane remodeling. Significantly the depletion of ACAP4 by small interfering RNA or inhibition of ARF6 GTP hydrolysis by overexpressing GAP-deficient ACAP4 suppressed ARF6-dependent cell migration in wound healing, demonstrating the importance of ACAP4 in cell migration. Thus, our study sheds new light on the biological function of ARF6-mediated cell migration.  相似文献   

16.
17.
Fbx8 makes Arf6 refractory to function via ubiquitination   总被引:1,自引:0,他引:1  
The small GTP-binding protein Arf6 regulates membrane remodeling at cell peripheries and plays crucial roles in higher orders of cellular functions including tumor invasion. Here we show that Fbx8, an F-box protein bearing the Sec7 domain, mediates ubiquitination of Arf6. This ubiquitination did not appear to be linked to immediate proteasomal degradation of Arf6, whereas Fbx8 knockdown caused hyperactivation of Arf6. Expression of Fbx8 protein was substantially lost in several breast tumor cell lines, in which Arf6 activity is pivotal for their invasion. Forced expression of Fbx8 in these cells suppressed their Arf6 activities and invasive activities, in which the F-box and Sec7 domains of Fbx8 are required. Together with the possible mechanism as to how Fbx8-mediated ubiquitination interferes with the functions of Arf6, we propose that Fbx8 provides a novel suppressive control of Arf6 activity through noncanonical ubiquitination. Our results indicate that dysfunction of Fbx8 expression may contribute to the invasiveness of some breast cancer cells.  相似文献   

18.
Growth factor-dependent accumulation of the cyclin D1 proto-oncogene is balanced by its rapid phosphorylation-dependent proteolysis. Degradation is triggered by threonine 286 phosphorylation, which promotes its ubiquitination by an unknown E3 ligase. We demonstrate that Thr286-phosphorylated cyclin D1 is recognized by a Skp1-Cul1-F box (SCF) ubiquitin ligase where FBX4 and alphaB crystallin govern substrate specificity. Overexpression of FBX4 and alphaB crystallin triggered cyclin D1 ubiquitination and increased cyclin D1 turnover. Impairment of SCF(FBX4-alphaB crystallin) function attenuated cyclin D1 ubiquitination, promoting cyclin D1 overexpression and accelerated cell-cycle progression. Purified SCF(FBX4-alphaB crystallin) catalyzed polyubiquitination of cyclin D1 in vitro. Consistent with a putative role for a cyclin D1 E3 ligase in tumorigenesis, FBX4 and alphaB crystallin expression was reduced in tumor-derived cell lines and a subset of primary human cancers that overexpress cyclin D1. We conclude that SCF(FBX4-alphaB crystallin) is an E3 ubiquitin ligase that promotes ubiquitin-dependent degradation of Thr286-phosphorylated cyclin D1.  相似文献   

19.
Programmed cell death 4 (Pdcd4), a tumour suppressor, is frequently down‐regulated in various types of cancer. Pdcd4 has been demonstrated to efficiently suppress tumour promotion, progression and proliferation. The biochemical function of Pdcd4 is a protein translation inhibitor. Although the fact that Pdcd4 inhibits protein translation has been known for more than a decade, the mechanism by which Pdcd4 controls tumorigenesis through translational regulation of its target genes is still not fully understood. Recent studies show that Pdcd4 inhibits translation of stress‐activated‐protein kinase interacting protein 1 to suppress tumour invasion, depicting a picture of how Pdcd4 inhibits tumorigenesis through translational inhibition. Thus, understanding the mechanism of how Pdcd4 attenuates tumorigenesis by translational control should provide a new strategy for combating cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号