首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Chemical probes that covalently modify the active sites of enzymes in complex proteomes are useful tools for identifying enzyme activities associated with discrete (patho) physiological states. Researchers in proteomics typically use two types of activity-based probes to fulfill complementary objectives: fluorescent probes for rapid and sensitive target detection and biotinylated probes for target purification and identification. Accordingly we hypothesized that a strategy in which the target detection and target isolation steps of activity-based proteomic experiments were merged might accelerate the characterization of differentially expressed protein activities. Here we report the synthesis and application of trifunctional chemical proteomic probes in which elements for both target detection (e.g. rhodamine) and isolation (e.g. biotin) are appended to a sulfonate ester reactive group, permitting the consolidated visualization and affinity purification of labeled proteins by a combination of in-gel fluorescence and avidin chromatography procedures. A trifunctional phenyl sulfonate probe was used to identify several technically challenging protein targets, including the integral membrane enzyme 3beta-hydroxysteroid dehydrogenase/Delta5-isomerase and the cofactor-dependent enzymes platelet-type phosphofructokinase and type II tissue transglutaminase. The latter two enzyme activities were significantly up-regulated in the invasive estrogen receptor-negative (ER(-)) human breast cancer cell line MDA-MB-231 relative to the non-invasive ER(+) breast cancer lines MCF7 and T-47D. Collectively these studies demonstrate that chemical proteomic probes incorporating elements for both target detection and target isolation fortify the important link between the visualization of differentially expressed enzyme activities and their subsequent molecular identification, thereby augmenting the information content achieved in activity-based profiling experiments.  相似文献   

2.
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.  相似文献   

3.
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.  相似文献   

4.
Summary. In the postgenomic era new technologies are emerging for global analysis of protein function. The introduction of active site-directed chemical probes for enzymatic activity profiling in complex mixtures, known as activity-based proteomics has greatly accelerated functional annotation of proteins. Here we review probe design for different enzyme classes including serine hydrolases, cysteine proteases, tyrosine phosphatases, glycosidases, and others. These probes are usually detected by their fluorescent, radioactive or affinity tags and their protein targets are analyzed using established proteomics techniques. Recent developments, such as the design of probes for in vivo analysis of proteomes, as well as microarray technologies for higher throughput screenings of protein specificity and the application of activity-based probes for drug screening are highlighted. We focus on biological applications of activity-based probes for target and inhibitor discovery and discuss challenges for future development of this field.  相似文献   

5.
Insights into the proteome reactivity of electrophiles are crucial for designing activity-based probes for enzymes lacking cognate affinity labels. Here, we show that different classes of carbon electrophiles exhibit markedly distinct amino acid labeling profiles in proteomes, ranging from selective reactivity with cysteine to adducts with several amino acids. These data specify electrophilic chemotypes with restricted and permissive reactivity profiles to guide the design of next-generation functional proteomics probes.  相似文献   

6.
Many tumor cells have elevated levels of hydrolytic and proteolytic enzymes, presumably to aid in key processes such as angiogenesis, cancer cell invasion, and metastasis. Functional roles of enzymes in cancer progression are difficult to study using traditional genomic and proteomic methods because the activities of these enzymes are often regulated by post-translational mechanisms. Thus, methods that allow for the direct monitoring of enzyme activity in a physiologically relevant environment are required to better understand the roles of specific players in the complex process of tumorigenesis. This review highlights advances in the field of activity-based proteomics, which uses small molecules known as activity-based probes (ABPs) that covalently bind to the catalytic site of target enzymes. We discuss the application of ABPs to cancer biology, especially to the discovery of tumor biomarkers, the screening of enzyme inhibitors, and the imaging of enzymes implicated in cancer.  相似文献   

7.
The field of activity-based proteomics is a relatively new discipline that makes use of small molecules, termed activity-based probes (ABPs), to tag and monitor distinct sets of proteins within a complex proteome. These activity-dependant labels facilitate analysis of systems-wide changes at the level of enzyme activity rather than simple protein abundance. While the use of small molecule inhibitors to label enzyme targets is not a new concept, the past ten years have seen a rapid expansion in the diversity of probe families that have been developed. In addition to increasing the number and types of enzymes that can be targeted by this method, there has also been an increase in the number of methods used to visualize probes once they are bound to target enzymes. In particular, the use of small organic fluorophores has created a wealth of applications for ABPs that range from biochemical profiling of diverse proteomes to direct imaging of active enzymes in live cells and even whole animals. In addition, the advent of new bioorthogonal coupling chemistries now enables a diverse array of tags to be added after targets are labeled with an ABP. This strategy has opened the door to new in vivo applications for activity-based proteomic methods.  相似文献   

8.
Background: Synthetic probes that mimic natural substrates can enable the detection of enzymatic activities in a cellular environment. One area where such activity-based probes have been applied is the ubiquitin-proteasome pathway, which is emerging as an important therapeutic target. A family of reagents has been developed that specifically label deubiquitylating enzymes (DUBs) and facilitate characterization of their inhibitors. Scope of review: Here we focus on the application of probes for intracellular DUBs, a group of specific proteases involved in the ubiquitin proteasome system. In particular, the functional characterization of the active subunits of this family of proteases that specifically recognize ubiquitin and ubiquitin-like proteins will be discussed. In addition we present the potential and design of activity-based probes targeting kinases and phosphatases to study phosphorylation. Major conclusions: Synthetic molecular probes have increased our understanding of the functional role of DUBs in living cells. In addition to the detection of enzymatic activities of known members, activity-based probes have contributed to a number of functional assignments of previously uncharacterized enzymes. This method enables cellular validation of the specificity of small molecule DUB inhibitors. General significance: Molecular probes combined with mass spectrometry-based proteomics and cellular assays represent a powerful approach for discovery and functional validation, a concept that can be expanded to other enzyme classes. This addresses a need for more informative cell-based assays that are required to accelerate the drug development process. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

9.
Activity-based protein profiling (ABPP) is a robust chemoproteomic technique that uses activity-based probes to globally measure endogenous enzymatic activity in complex proteomes. It has been utilized extensively to characterize human disease states and identify druggable targets in diverse disease conditions. ABPP has also recently found applications in microbiology. This includes using activity-based probes (ABPs) for functional studies of pathogenic bacteria as well as complex communities within a microbiome. This review will focus on recent advances in the use of ABPs to profile enzyme activity in disease models, screen for selective inhibitors of key enzymes, and develop imaging tools to better understand the host–bacterial interface.  相似文献   

10.
Protein-protein interactions (PPIs) trigger a wide range of biological signaling pathways that are crucial for biomedical research and drug discovery. Various techniques have been used to study specific proteins, including affinity chromatography, activity-based probes, affinity-based probes and photo-affinity labeling (PAL). PAL has become one of the most powerful strategies to study PPIs. Traditional photocrosslinkers are used in PAL, including benzophenone, aryl azide, and diazirine. Upon photoirradiation, these photocrosslinkers (Pls) generate highly reactive species that react with adjacent molecules, resulting in a direct covalent modification. This review introduces recent examples of chemical proteomics study using PAL for PPIs.  相似文献   

11.
The principles of enzyme chemistry, mechanism of action and inhibitor design are being applied to proteomics by the development of activity-based probes. This approach suggests a potentially broad method for interrogating enzyme family members, both known and unknown, in cells and proteomic fractions without the need for individual assay development and isolation. The serine hydrolases and cysteine proteases have provided the proofs of concept for activity-based proteomics, and other studies are rapidly following. The result will be a proteomics technology of great value to drug discovery and development.  相似文献   

12.
The field of activity-based proteomics makes use of small molecule active site probes to monitor distinct subsets of enzymatic proteins. While a number of reactive functional groups have been applied to activity-based probes (ABPs) that target diverse families of proteases, there remains a continual need for further evaluation of new probe scaffolds and reactive functional groups for use in ABPs. In this study we evaluate the utility of the, alpha,beta-unsaturated ketone reactive group for use in ABPs targeting the papain-family of cysteine proteases. We find that this reactive group shows highly selective labeling of cysteine cathepsins in both intact cells and total cell extracts. We observed a variable degree of background labeling that depended on the type of tag and linker used in the probe synthesis. The relative ease of synthesis of this class of compounds provides the potential for further derivatization to generate new families of cysteine protease ABPs with unique specificity and labeling properties.  相似文献   

13.
The broad inhibitory spectrum of aldehydes and the possibility that amino acid residues modulate their specificity point to the potential of using peptidyl aldehydes as activity-based probes. Here, we establish the potential of peptidyl aldehydes in activity-based proteomics by synthesizing different probes and using them to specifically label a well-known serine protease in an activity-dependent manner. From our results, peptidyl aldehydes emerge as promising activity-based probes that enable multiple enzymatic-class detection by substrate recognition and can be used in diverse activity-based proteomics applications like protein identification and activity profiling.  相似文献   

14.
Activity-based proteomics is a methodology that is used to quantify the catalytically active subfraction of enzymes present in complex mixtures such as lysates or living cells. To apply this approach for in-cell selectivity profiling of inhibitors of serine proteases, we designed a novel activity-based probe (ABP). This ABP consists of (i) a fluorophosphonate-reactive group, directing the probe toward serine hydrolases or proteases and (ii) an alkyne functionality that can be specifically detected at a later stage with an azide-functionalized reporter group through a Cu(I)-catalyzed coupling reaction ("click chemistry"). This novel ABP was shown to label the active site of several serine proteases with greater efficiency than a previously reported fluorophosphonate probe. More importantly, our probe was cell-permeable and achieved labeling of enzymes within living cells with efficiency similar to that observed for the corresponding lysate fraction. Several endogenous serine hydrolases whose activities were detected upon in-cell labeling were identified by two-dimensional gel and MS analyses. As a proof of principle, cell-permeable inhibitors of an endogenous serine protease (prolyl endopeptidase) were assessed for their potency and specificity in competing for the in situ labeling of the selected enzyme. Altogether these results open new perspectives for safety profiling studies in uncovering potential cellular "side effects" of drugs (unanticipated off-target inhibition or activation) that may be overlooked by standard selectivity profiling methods.  相似文献   

15.
Activity-based protein profiling (ABPP) is recognized as a powerful and versatile chemoproteomic technology in drug discovery. Central to ABPP is the use of activity-based probes to report the activity of specific enzymes or reactivity of amino acid types in complex biological systems. Over the last two decades, ABPP has facilitated the identification of new drug targets and discovery of lead compounds in human and infectious disease. Furthermore, as part of a sustained global effort to illuminate the druggable proteome, the repertoire of target classes addressable with activity-based probes has vastly expanded in recent years. Here, we provide an overview of ABPP and summarise the major technological advances with an emphasis on probe development.  相似文献   

16.

Background

High throughput screening (HTS) is one of the primary tools used to identify novel enzyme inhibitors. However, its applicability is generally restricted to targets that can either be expressed recombinantly or purified in large quantities.

Methodology and Principal Findings

Here, we described a method to use activity-based probes (ABPs) to identify substrates that are sufficiently selective to allow HTS in complex biological samples. Because ABPs label their target enzymes through the formation of a permanent covalent bond, we can correlate labeling of target enzymes in a complex mixture with inhibition of turnover of a substrate in that same mixture. Thus, substrate specificity can be determined and substrates with sufficiently high selectivity for HTS can be identified. In this study, we demonstrate this method by using an ABP for dipeptidyl aminopeptidases to identify (Pro-Arg)2-Rhodamine as a specific substrate for DPAP1 in Plasmodium falciparum lysates and Cathepsin C in rat liver extracts. We then used this substrate to develop highly sensitive HTS assays (Z’>0.8) that are suitable for use in screening large collections of small molecules (i.e >300,000) for inhibitors of these proteases. Finally, we demonstrate that it is possible to use broad-spectrum ABPs to identify target-specific substrates.

Conclusions

We believe that this approach will have value for many enzymatic systems where access to large amounts of active enzyme is problematic.  相似文献   

17.
To realize the promise of genomics-based therapeutics, new methods are needed to accelerate the discovery of small molecules that selectively modulate protein activity. Toward this end, advances in combinatorial synthesis have provided unprecedented access to large compound libraries of considerable structural complexity and diversity, shifting the bottleneck in drug discovery to the development of efficient screens for protein targets. Screening for reversible enzyme inhibitors typically requires extensive target-specific work, including protein expression and purification, as well as the development of specific substrate assays. Here we report a proteomic method for the discovery of reversible enzyme inhibitors that avoids these steps. We show that competitive profiling of a library of candidate serine hydrolase inhibitors in complex proteomes with activity-based chemical probes identifies nanomolar reversible inhibitors of several enzymes simultaneously, including the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH), triacylglycerol hydrolase (TGH) and an uncharacterized membrane-associated hydrolase that lacks known substrates. The strategy tests inhibitors against numerous enzymes in parallel, assigning both potency and selectivity factors to each agent. In this way, promiscuous inhibitors were readily rejected in favor of equally potent compounds with 500-fold or greater selectivity for their targets.  相似文献   

18.
19.
Quantification studies of complex protein mixtures have been restricted mainly to whole cell extracts. Here we describe the synthesis of two sets of isotope-coded activity-based probes that allow quantitative functional proteomics experiments on the cathepsins.  相似文献   

20.
Elucidation of in vivo substrate degradomes of a protease is a daunting endeavor because of the large number of proteins in a proteome and often minute and transient amounts of key substrates. Proteomic substrate screens for proteases are currently experiencing impressive progress. Mass spectrometry-based global proteome analysis, interfaced with liquid-chromatography and together with stable isotope labeling strategies, has provided increased coverage and sensitivity for quantitative proteomics. ICAT and iTRAQ labeling have been used to identify a plethora of new matrix metalloproteinase substrates. Emerging techniques focus on the quantitative analysis of proteolytically generated neo amino-termini, which we call terminopes, on a system-wide basis. In vivo SILAC pulse-chase experiments have also enabled the study of individual protein turnover and global proteome dynamics in cells and whole organisms. Together with activity-based probes for the profiling of functional proteases, there is now in place an array of complementary technologies to dissect the 'protease web' and its distortion in pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号