首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natriuretic Peptides--A New Class of Plant Hormone?   总被引:2,自引:0,他引:2  
GEHRING  C. A. 《Annals of botany》1999,83(4):329-334
Recent immunological and functional evidence suggests the presenceof a biologically active natriuretic peptide hormone (NP) systemin plants. The evidence includes specific binding of rat atrialNP [rANP (99–126)] to isolated plant membranes and thepromotion of stomatal opening that is concentration and conformationdependent. The native circular molecule is active whereas thelinearized molecule shows no biological activity. Stomatal openingmediated by rANP (99–126) is inhibited by LY 83583, anantagonist of guanylate cyclase, while 8-Br-cGMP, a cell permeantcyclic guanosine-3'-5'-monophosphate (cGMP) analogue, mimicsrANP (99–126) effects. Most importantly, isolation andimmunoaffinity purification of biologically active plant NP(irPNP) fromHedera helixhas been achieved and immunoaffinitypurified peptide has been shown to induce rapid and specificincreases in cGMP levels inZea maysroot stele. Furthermore,rANP (99–126), irPNP and cGMP promote radial water movementsfrom the xylem ofTradescantia multifloraand these NP-inducedand cGMP-dependent increases are prevented by a water channelinhibitor. Taken together, the data are consistent with thepresence of a biologically active NP system that, as in vertebrates,signals via cGMP dependent pathways. The evidence suggests thatthe NP system has a role in maintaining water and salt homeostasisin plants.Copyright 1999 Annals of Botany Company Plant hormones, natriuretic peptides, stomata, cGMP, salt and water homeostasis.  相似文献   

2.
Natriuretic peptides--a class of heterologous molecules in plants   总被引:1,自引:0,他引:1  
Immunological and physiological evidence suggests the presence of biologically active natriuretic peptide hormones (NPs) in plants. Evidence includes specific binding of rat atrial NP, [rANP (99-126)] to plant membranes and the promotion of cyclic guanosine-3',5'-monophosphate (cGMP) mediated stomatal responses. Furthermore, anti-ANP affinity purifies biologically active plant immunoreactants (irPNPs) and a biologically active Arabidopsis thaliana irPNP (AtPNP-A) has been identified. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor, thus suggesting that irPNPs and ANP are heterologues. We hypothesise that irPNP-like molecules have evolved from primitive glucanase-like molecules that have been recruited to become systemically mobile modulators of homeostasis acting via the plasma membrane. Such a function is compatible with localisation in the conductive tissue and the physiological and cellular modes of action of irPNPs reported to-date.  相似文献   

3.
125I-Porcine brain natriuretic peptide (125I-pBNP) bound to mouse astrocytes in primary culture in a time-dependent manner (t1/2 = 4.5 min), similar to 125I-human atrial natriuretic peptide (125I-hANP) (t1/2 = 5 min). Binding was saturable and reached equilibrium after 90 min at 22 degrees C for both radioligands. Scatchard analysis suggested a single class of binding sites for pBNP with a binding affinity and capacity (KD = 0.08 nM; Bmax = 78.3 fmol/mg of protein) similar to those of hANP1-28 (KD = 0.1 nM; Bmax = 90.3 fmol/mg of protein). In competition binding studies, pBNP or human/rat atrial natriuretic peptide (ANP) analogues [hANP1-28, rat ANP1-28 (rANP1-28), and rANP5-28] displaced 125I-hANP, 125I-pBNP, and 125I-rANP1-28 completely, all with IC50 values of less than nM (0.14-0.83 nM). All four peptides maximally stimulated cyclic GMP (cGMP) production by 10 min at 22 degrees C at concentrations of 1 microM with EC50 values ranging from 50 to 100 nM. However, maximal cGMP induction by brain natriuretic peptide (BNP) (25.9 +/- 2.1 pmol/mg of protein) was significantly greater than that by hANP1-28 (11.5 +/- 2.2 pmol/mg of protein), rANP1-28 (16.5 +/- 2.0 pmol/mg of protein), and rANP5-28 (15.8 +/- 2.2 pmol/mg of protein). These studies indicate that BNP and ANPs act on the same binding sites and with similar affinities in cultured mouse astrocytes. BNP, however, exerts a greater effect on cGMP production. The difference in both affinity and selectivity between binding and cGMP production may indicate the existence of receptor subtypes that respond differentially to natriuretic peptides despite similar binding characteristics.  相似文献   

4.
We obtained evidence that amiloride specifically potentiates 125I-labeled alpha-rat atrial natriuretic peptide (1-28) [atrial natriuretic peptide (ANP)-(99-126); rANP] binding to cerebral capillaries isolated from the rat cerebral cortex. The binding parameters, KD of 173 pM and Bmax of 159 fmol/mg of protein, became 33 pM and 88 fmol/mg of protein, respectively, when 10(-4) M amiloride was added to the incubation medium. When the effect of rANP was investigated on in vitro 22Na+ uptake into isolated cerebral capillaries, 10(-7) M rANP significantly inhibited the uptake in the presence of 1.0 mM ouabain, 1.0 mM furosemide, and 2.0 mM LiCl in the uptake buffer, a finding suggesting a specific inhibitory effect of rANP on amiloride-sensitive Na+ transport. Thus, the possibility that ANPs control amiloride-sensitive Na+ transport at the blood-brain barrier by interacting with specific receptors has to be considered.  相似文献   

5.
Specific binding sites for atrial natriuretic peptide (ANP) were studied in cultured mesenchymal nonmyocardial cells (NMC) from rat heart. Binding study using 125I-labeled synthetic rat (r) ANP revealed the presence of a single class of high-affinity binding sites for rANP in cultured NMCs derived from both atria and ventricles; the apparent dissociation constant (Kd) was approximately 0.2 - 0.3 nM and the number of maximal binding sites was approximately 190,000 - 300,000 sites/cell. rANP significantly stimulated intracellular cGMP formation of cardiac NMCs in a dose-dependent manner (1.6 X 10(-8) M - 3.2 X 10(-7) M). rANP had no effect on synthesis of prostaglandin I2 by cultured cardiac NMCs. The physiological significance of ANP action on cardiac tissue remains to be determined.  相似文献   

6.
Higher plants contain biologically active molecules that are recognized by anti-human atrial natriuretic polypeptide rabbit serum (anti-ANP). These molecules are termed immunoreactant plant natriuretic peptides (irPNPs) and have previously been shown to be associated with conductive tissue and to affect ion fluxes, protoplast volume regulation and stomatal guard cell responses. Herein an irPNP from the brassicaceus weed Erucastrum strigosum is identified and it is demonstrated that the relative amounts of irPNP expressed as a percentage of total water : methanol (50 : 50) extracted proteins are increased when plants are exposed to 300 m M NaCl. Since 100 and 200 m M NaCl reduce dry and fresh mass as well as increase total tissue NaCl load, it is hypothesized that irPNP up-regulation is a late and possibly adaptive response. IrPNP is also significantly up-regulated in Arabidopsis thaliana suspension culture cells in response to 150 m M NaCl and even more so in response to iso-osmolar amounts of sorbitol. Finally, a recombinant A. thaliana irPNP (AtPNP-A) promotes net water-uptake into the protoplast and thus volume increases. This response is dependent on de novo protein synthesis and may suggest a complex and possibly regulatory function for irPNP-like molecules in plant homeostasis.  相似文献   

7.
Plant natriuretic peptide immuno-analogues (irPNP) have previously been shown to affect a number of biological processes including stomatal guard cell movements, ion fluxes and osmoticum-dependent water transport. Tissue printing and immunofluorescent labelling techniques have been used here to study the tissue and cellular localization of irPNP in ivy (Hedera helix L.) and potato (Solanum tuberosum L.). Polyclonal antibodies active against human atrial natriuretic peptide (anti-hANP) and antibodies against irPNP from potato (anti-StPNP) were used for immunolabelling. Tissue prints revealed that immunoreactants are concentrated in vascular tissues of leaves, petioles and stems. Phloem-associated cells, xylem cells and parenchymatic xylem cells showed the strongest immunoreaction. Immunofluorescent microscopy with fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG supported this finding and, furthermore, revealed strong labelling to stomatal guard cells and the adjacent apoplastic space as well. Biologically active immunoreactants were also detected in xylem exudates of a soft South African perennial forest sage (Plectranthus ciliatus E. Mey ex Benth.) thus strengthening the evidence for a systemic role of the protein. In summary, in situ cellular localization is consistent with physiological responses elicited by irPNPs reported previously and is indicative of a systemic role in plant homeostasis.  相似文献   

8.
Abstract: The presence of immunoreactive (IR) endothelin (ET)-1 and ET-1 receptors in rat retina has been studied by radioimmunoassay and receptor assay, respectively. The specific binding of 125I-ET-1 to rat retinal particulate preparations was saturable. Apparent equilibrium conditions were established within 120–140 min. Scatchard analysis of binding data indicated a single class of high-affinity binding sites with a K D of 35 ± 11 p M and a Bmax of 168 ± 60 fmol/mg of protein. 125I-ET-1 binding to retinal particulate preparations was not inhibited by 1 μ M concentrations of somatostatin, atrial natriuretic factor, brain natriuretic peptide, thyroid-stimulating hormone, growth hormone, or insulin. The three endothelin isoforms, ET-1,-2, and-3, had similar affinity for the receptor. Cross-linking of 125I-ET-1 to retinal particulate preparations with disuccinimidyl suberate resulted in the labeling of two bands with apparent molecular masses of 52 and 34 kDa. We have established a highly sensitive and specific radioimmunoassay for ET-1. The concentration of IR-ET-1 in rat retina was 35 ± 10 fmol/g wet weight. The demonstration of specific high-affinity ETB receptors and the presence of IR-ET-1 suggest that the peptide may act as a neurotransmitter or neuro-modulator in the retina.  相似文献   

9.
Abstract: The characteristics of cholecystokinin (CCK) binding to its receptors in a particulate membrane fraction of mouse cerebral cortex were studied by employing biologically active radioiodinated CCK prepared by conjugation with 125I-Bolton-Hunter (125I-BH) reagent. At 24°C binding was rapid, reversible, and linearly related to protein content. Binding was maximal at acidic pH (6.5) and reduced by the presence of monovalent cations. Under physiological conditions (pH 7.4, 118 mM-NaC1, 4.7 mM-KCl) Scatchard plots of CCK binding were linear with a K D value of 1.27 nM and binding capacity of 115 fmol/mg protein. Optimal binding required the presence of both Mg2+ and EGTA, and was inhibited by the addition of micromolar concentrations of Cu2+ (ID50= 30 μM). The cortical receptor recognized all major forms of CCK, with an order of potency of cholecystokinin octapeptide (CCK8) > CCK > cholecystokinin tetrapeptide (CCK4). Desulfated cholecystokinin octapeptide (dCCK8) had a 10-fold lower affhity than CCK8. Dibutyryl cyclic GMP, a potent competitive inhibitor of CCK binding to receptors in pancreas, was not a specific inhibitor of CCK binding to brain receptors. These present results support the concept that CCK may function as a regulatory peptide in brain, and that the cortical CCK receptor is different from the receptors mediating the peripheral action of CCK.  相似文献   

10.
Whole bean plants, ev. Cockfield, grown in pots crowded or well-spaced (50 or 10 plants m2, respectively) were treated with 14CO2 at the pod-fill stage (25 modes) and the radioactivity in each leaf was determined after 30 min. With spaced plants the uptake was greatest in the mid-stem leaves and was proportional to leaf area. In contrast, 70% of the total assimilation took place in the upper six leaves of crowded plants and there was a steady decrease down the stem.
When 14CO2 was fed to single leaves of similar crowded plants the resultant distribution of labelled assimilates varied with the position of the treated leaf. After 6 h, 67% of the 14C fixed by a mid-stem leaf (node 13) was recovered from the beans, whereas 76% of that from an upper leaf (node 23) had accumulated along the stem. Due to the shading of mid-stem leaves at the higher planting densities, seed yield becomes increasingly dependent upon re-distribution of assimilates from stem to beans.  相似文献   

11.
Systemic clearance of atrial natriuretic peptide (ANP) is in part due to neutral endopeptidase (NEP) proteolysis and natriuretic peptide receptor-C (NPR-C) mediated endocytosis. Biological responses to ANP are primarily mediated by the membrane guanylyl cyclase-A/natriuretic peptide receptor-A (NPR-A). Analogs of ANP selective for NPR-A and/or resistant to NEP may have increased activity in those tissues where NPR-C and NEP are coexpressed with NPR-A. The analog of ANP termed vANP; [(R3D, G9T, R11S, M12L, G16R)ANP] is selective for human NPR-A with at least 10,000 fold reduction in affinity for human NPR-C. We report that rat NPR-A is insensitive to 10 nM vANP, demonstrating the limitations of this species in evaluating human therapeutic candidates. As an alternative approach we tested the binding and potency of receptor-selective and NEP-resistant ANP analogs in rhesus monkey tissues. Competition binding studies with a simplified version of vANP, sANP [(G9T, R11S, G16R)rANP], in rhesus monkey kidney and lung membrane preparations shows displacement of 125I-ANP from only a fraction of the total ANP receptor population, 30 and 85%, respectively. The remaining ANP binding sites can be occupied with the NPR-C selective ligand cANP(4-23). These data strongly suggest that only two classes of ANP receptor are present in these membrane preparations, NPR-A and NPR-C. The NEP resistant sANP derivative called sANP(TAPR) was 8 fold more potent (ED50 = 0.6 nM) than rANP (ED50 = SnM) in stimulating cGMP production in the lung membrane preparation. Our results demonstrate that the rhesus monkey natriuretic peptide receptors reflect the pharmacology of the human receptors, and that this species may be suitable to determine the role of NPR-C and NEP in peptide clearance and attenuating functional responses.  相似文献   

12.
Binding, internalization, and degradation of 125I-labeled-rat atrial natriuretic peptide (rANP) were studied in cultured rat aortic vascular smooth muscle cells (VSMC). At 37 degrees C, 125I-labeled-rANP rapidly bound to VSMCs, but the cell-bound radioactivity rapidly decreased upon subsequent incubation, while the binding was slow at 4 degrees C, reaching to an apparent equilibrium after 6 hrs. The cell-bound 125I-labeled-rANP at 37 degrees C is rapidly dissociated from VSMC (t 1/2: approximately 40 min) with the appearance of degradaded product(s) of radioligand in the medium, whereas the degradation was minimal at 4 degrees C. This degradative process was blocked by inhibitors of metabolic energy production (azide, dinitrophenol), inhibitors of lysosomal cathepsins (leupeptin, pepstatin), and lysosomotropic agents (NH4Cl, chloroquine, lidocaine, methylamine, dansylcadaverine), but not by inhibitors of serine or thiol proteases. 125I-labeled-rANP initially bound to the cell-surface was rapidly internalized, and delivered to lysosomal structures, which was confirmed by autoradiographic studies. These data indicate that rANP, after binding to the cell-surface receptors, is rapidly internalized into the cells through receptor-mediated endocytosis, and subsequently degradaded by lysosomal hydrolases.  相似文献   

13.
Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m−2 s−1 photosynthetically active radiation) or with the addition of 8. 9 KJ m−2 day−1 biologically effective UV-B (UV-BBE) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants.  相似文献   

14.
Biological activities of a variety of synthetic human (h) and rat (r) atrial natriuretic peptide (ANP) and related peptides as assessed by receptor binding and cyclic GMP response, and regulation of vascular ANP receptors were studied in rat aortic vascular smooth muscle cells (VSMC) in culture. alpha-hANP1-28 and alpha-hANP7-28 equally inhibited the binding of 125I-labeled-alpha-hANP to its vascular receptors, whereas Met(O)12-alpha-hANP1-28 was less potent and reduced and carboxymethylated (RCM)-alpha-hANP1-28 was ineffective. rANP5-27 and rANP5-28 were equipotent in receptor binding, whereas rANP5-25 had somewhat less potent effect and rANP8-28 fragment was ineffective. alpha-hANP1-28, alpha-hANP7-28, rANP5-27 and rANP5-28 similarly stimulated intracellular cyclic GMP formation, whereas rANP5-25 showed less stimulatory effect, and RCM-alpha-hANP1-28, Met12-sulfoxide and rANP fragment were ineffective. Pretreatment with unlabeled alpha-hANP (3.2 X 10(-9) and 3.2 X 10(-8)M) for 24 hrs resulted in a substantial reduction (55 and 75%) of total receptor number without changing the affinity of ANP receptors. These results suggest that the common ring structure formed by the disulfide bond in the molecule is critical for receptor binding and subsequent biological actions, and that a hydrophobic amino acid located at the position of 12, and (24-26) residues at the C-terminal side, but not (1-6) at the N-terminal side, of the disulfide bridge may play a part in modulating receptor binding and/or biological functions. The present study also indicates "down-regulation" of vascular ANP receptors by homologous ligand.  相似文献   

15.
16.
The highly active, polar gibberellin-like substance found in the apical region of shoots of tall (genotype Le ) peas ( Pisum sativum L.) is shown by combined gas chromatography-mass spectrometry (GC/MS) to be GA1. This substance is either absent or present at only low levels in dwarf ( le ) plants. Multiple ion monitoring (MIM) tentatively suggests that GA8 may also be present in shoot tissue of tall peas. Gibberellin A1 is the first 3 β-hydroxylated gibberellin positively identified in peas, and its presence in shoot tissue demonstrates the organ specificity of gibberellin production since GA1 has not been detected in developing seeds. Application of GA1 can mask the Le/le gene difference. However, whilst Le plants respond equally to GA20 and GA1, le plants respond only weakly to GA20, the major biologically active gibberellin found in dwarf peas. These results suggest that the Le gene controls the production of a 3 β-hydroxylase capable of converting GA20 to GA1. Further support for this view comes from feeds of [3H] GA20 to Le and le plants. Plants with Le metabolise [3H] GA20 to three major products whilst le plants produce only one major product after the same time. The metabolite common to Le and le plants co-chromatographs with GA29. The additional two metabolites in Le peas co-chromatograph with GA1 and GA8.  相似文献   

17.
A Boumezrag  F Lyall  J A Dow 《Life sciences》1988,43(24):2035-2042
Specific binding sites for atrial natriuretic peptide have been identified in membrane of the phaeochromocytoma cell line PC12. Scatchard analysis of binding studies revealed a Kd of 794 pM and a density (Bmax) of 254 fmol/mg protein. Hormones unrelated to ANP such as angiotensin II, bradykinin and arginine-8-vasopressin did not complete for the binding sites. Of the ANP-related peptides which competed for the binding sites, the following order of affinity was established; rANP (8-33) greater than rANP (28 amino acid) greater than rat atrial peptide fragment (13-28) greater than a-hANP (28 amino acid) greater than atrial peptide fragment (1-11) greater than atriopeptin I.  相似文献   

18.
Abstract: Calcitonin gene-related peptide (CGRP) and its receptors are found in mammalian spinal cord. We show, for the first time, binding sites for the novel related peptide adrenomedullin in rat spinal cord microsomes. 125I-Adrenomedullin binding showed high affinity ( K D = 0.45 ± 0.06 n M ) and sites were abundant ( B max = 723 ± 71 fmol/mg of protein). CGRP, amylin, and calcitonin did not compete at these sites ( K i > 10 µ M ). High-affinity CGRP binding sites ( K D = 0.18 ± 0.01 n M ) were much less numerous ( B max = 17.7 ± 2.4 fmol/mg of protein) and showed competition by unlabeled adrenomedullin ( K i = 34.6 ± 2.4 n M ). Chemical cross-linking revealed a major band for 125I-adrenomedullin of Mr = 84,400 ± 1,200 and a minor band of Mr = 122,000 ± 8,700. 125I-CGRP cross-linking showed bands of lower molecular weight (Mr = 74,500 ± 5,000 and 61,000 ± 2,200). Enzymic deglycosylation of the adrenomedullin binding site showed a considerable carbohydrate content. Neither adrenomedullin nor CGRP was able to increase cyclic AMP in spinal cord. Adrenomedullin mRNA was present in spinal cord, at one-third of its level in lung, and adrenomedullin immunoreactivity was present, at a low concentration (40 fmol/g of tissue). Thus, the presence of abundant binding sites and adrenomedullin mRNA and immunoreactivity anticipate an as yet undefined function for this peptide in spinal cord.  相似文献   

19.
Abstract: Angiotensin IV (Val-Tyr-Ile-His-Pro-Phe) has been reported to interact with specific high-affinity receptors to increase memory retrieval, enhance dopamine-induced stereotypy behavior, and induce c- fos expression in several brain nuclei. We have isolated a decapeptide (Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe) from sheep brain that binds with high affinity to the angiotensin IV receptor. The peptide was isolated using 125I-angiotensin IV binding to bovine adrenal membranes to assay receptor binding activity. This peptide is identical to the amino acid sequence 30–39 of sheep βA- and βB-globins and has previously been named LVV-hemorphin-7. Pharmacological studies demonstrated that LVV-hemorphin-7 and angiotensin IV were equipotent in competing for 125I-angiotensin IV binding to sheep cerebellar membranes and displayed full cross-displacement. Using in vitro receptor autoradiography, 125I-LVV-hemorphin-7 binding to sheep brain sections was identical to 125I-angiotensin IV binding in its pattern of distribution and binding specificity. This study reveals the presence of a globin fragment in the sheep brain that exhibits a high affinity for, and displays an identical receptor distribution with, the angiotensin IV receptor. This globin fragment, LVV-hemorphin-7, may therefore represent an endogenous ligand for the angiotensin IV receptor in the CNS.  相似文献   

20.
The comparative biological activities of intracerebroventricular (icv) injection of alpha-rat and alpha-human atrial natriuretic peptide (rANP and hANP, respectively) in the arginine vasopressin (AVP) release in conscious rats and the binding properties of these peptides to their specific receptors have been investigated. An icv injection of 5 micrograms rANP inhibited the AVP release induced by osmotic and hemorrhagic stimuli. In contrast, 20 micrograms of hANP was needed to exert an inhibitory effect on the AVP release. The receptor binding studies were carried out by using rat hypothalamic membrane preparations. The binding studies revealed that the potency of rANP was greater than that of hANP in displacing radioligand from its binding sites. Scatchard analysis revealed that the dissociation constant for rANP was significantly lower than that for hANP (0.52 +/- 0.04 vs 1.20 +/- 0.16 nM, P less than 0.01). The binding capacity of these peptides was similar. These results suggest that the greater biological potency of rANP compared with hANP in the inhibition of AVP release is caused by the difference in the binding potency of these peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号