首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Phenotypic plasticity describes the ability of an individual to alter its phenotype in response to the environment and is potentially adaptive when dealing with environmental variation. However, robustness in the face of a changing environment may often be beneficial for traits that are tightly linked to fitness. We hypothesized that robustness of some traits may depend on specific patterns of plasticity within and among other traits. We used a reaction norm approach to study robustness and phenotypic plasticity of three life‐history traits of the collembolan Orchesella cincta in environments with different thermal regimes. We measured adult mass, age at maturity and growth rate of males and females from heath and forest habitats at two temperatures (12 and 22 °C). We found evidence for ecotype‐specific robustness of female adult mass to temperature, with a higher level of robustness in the heath ecotype. This robustness is facilitated by plastic adjustments of growth rate and age at maturity. Furthermore, female fecundity is strongly influenced by female adult mass, explaining the importance of realizing a high mass across temperatures for females. These findings indicate that different predicted outcomes of life‐history theory can be combined within one species' ontogeny and that models describing life‐history strategies should not assume that traits like growth rate are maximized under all conditions. On a methodological note, we report a systematic inflation of variation when standard deviations and correlation coefficients are calculated from family means as opposed to individual data within a family structure.  相似文献   

2.
Influences of climate on life history traits in natural populations are well documented. However, the implications of between-individual variation in phenotypic plasticity underlying observed trait-environment relationships are rarely considered due to the large, long-term datasets required for such analysis. Studies typically present correlations of annual trait means with climate or assume that individual phenotypic responses are constant. Here, we examine this additional level of variation and show that, in a red deer population on the Isle of Rum, Scotland, changes in climate generate changes in phenotype only amongst individuals who have experienced favourable ecological conditions. Examination of relationships between offspring birth weight and spring temperature within the lifetimes of individual females revealed that the tendency to respond to climate declined as the population density experienced early in life increased. The presence of such systematic variation in individual plasticity is rarely documented in the wild, and has important implications for our understanding of the environmental dependencies of traits under varying ecological conditions.  相似文献   

3.
Phenotypic plasticity is predicted to evolve in more variable environments, conferring an advantage on individual lifetime fitness. It is less clear what the potential consequences of that plasticity will have on ecological population dynamics. Here, we use an invertebrate model system to examine the effects of environmental variation (resource availability) on the evolution of phenotypic plasticity in two life history traits—age and size at maturation—in long‐running, experimental density‐dependent environments. Specifically, we then explore the feedback from evolution of life history plasticity to subsequent ecological dynamics in novel conditions. Plasticity in both traits initially declined in all microcosm environments, but then evolved increased plasticity for age‐at‐maturation, significantly so in more environmentally variable environments. We also demonstrate how plasticity affects ecological dynamics by creating founder populations of different plastic phenotypes into new microcosms that had either familiar or novel environments. Populations originating from periodically variable environments that had evolved greatest plasticity had lowest variability in population size when introduced to novel environments than those from constant or random environments. This suggests that while plasticity may be costly it can confer benefits by reducing the likelihood that offspring will experience low survival through competitive bottlenecks in variable environments. In this study, we demonstrate how plasticity evolves in response to environmental variation and can alter population dynamics—demonstrating an eco‐evolutionary feedback loop in a complex animal moderated by plasticity in growth.  相似文献   

4.
Acquisition and allocation of resources are central to life‐history theory. However, empirical work typically focuses only on allocation despite the fact that relationships between fitness components may be governed by differences in the ability of individuals to acquire resources across environments. Here, we outline a statistical framework to partition the genetic basis of multivariate plasticity into independent axes of genetic variation, and quantify for the first time, the extent to which specific traits drive multitrait genotype–environment interactions. Our framework generalises to analyses of plasticity, growth and ageing. We apply this approach to a unique, large‐scale, multivariate study of acquisition, allocation and plasticity in the life history of the cricket, Gryllus firmus. We demonstrate that resource acquisition and allocation are genetically correlated, and that plasticity in trade‐offs between allocation to components of fitness is 90% dependent on genetic variance for total resource acquisition. These results suggest that genotype–environment effects for resource acquisition can maintain variation in life‐history components that are typically observed in the wild.  相似文献   

5.
Phenotypes vary hierarchically among taxa and populations, among genotypes within populations, among individuals within genotypes, and also within individuals for repeatedly expressed, labile phenotypic traits. This hierarchy produces some fundamental challenges to clearly defining biological phenomena and constructing a consistent explanatory framework. We use a heuristic statistical model to explore two consequences of this hierarchy. First, although the variation existing among individuals within populations has long been of interest to evolutionary biologists, within‐individual variation has been much less emphasized. Within‐individual variance occurs when labile phenotypes (behaviour, physiology, and sometimes morphology) exhibit phenotypic plasticity or deviate from a norm‐of‐reaction within the same individual. A statistical partitioning of phenotypic variance leads us to explore an array of ideas about residual within‐individual variation. We use this approach to draw attention to additional processes that may influence within‐individual phenotypic variance, including interactions among environmental factors, ecological effects on the fitness consequences of plasticity, and various types of adaptive variance. Second, our framework for investigating variation in phenotypic variance reveals that interactions between levels of the hierarchy form the preconditions for the evolution of all types of plasticity, and we extend this idea to the residual level within individuals, where both adaptive plasticity in residuals and canalization‐like processes (stability) can evolve. With the statistical tools now available to examine heterogeneous residual variance, an array of novel questions linking phenotype to environment can be usefully addressed.  相似文献   

6.
This study was designed to examine life history flexibility arising from phenotypic plasticity in response to temperature and from maternal effects in response to reproductive diapause in a temperate zone population of the milkweek bug (Oncopeltus fasciatus). We employed a split-family, first-cousin, full-sib design with siblings reared at different temperatures in order to quantify phenotypic plasticity, maternal effects, and variation for each. The following traits were analyzed: development time, age at first reproduction, longevity, early-life fecundity, and wing length. We found both life history plasticity and maternal effects on life history traits which tend to enhance the colonizing ability of offspring born to mothers that have undergone reproductive diapause. We were unable to demonstrate additive genetic variation for plasticity for any of the traits, while for development time and wing length we found variation due to non-additive genetic or common-environmental sources. We were also unable to demonstrate additive genetic variation for maternal effects, although variation may exist at low levels that are difficult to detect using cousin-families. The apparent lack of variation in this population would constrain evolution of life history flexibility even though considerable flexibility exists in the phenotype.  相似文献   

7.
Phenotypic plasticity is an important mechanism via which populations can respond to changing environmental conditions, but we know very little about how natural populations vary with respect to plasticity. Here we use random‐regression animal models to understand the multivariate phenotypic and genetic patterns of plasticity variation in two key life‐history traits, laying date and clutch size, using data from long‐term studies of great tits in The Netherlands (Hoge Veluwe [HV]) and UK (Wytham Woods [WW]). We show that, while population‐level responses of laying date and clutch size to temperature were similar in the two populations, between‐individual variation in plasticity differed markedly. Both populations showed significant variation in phenotypic plasticity (IxE) for laying date, but IxE was significantly higher in HV than in WW. There were no significant genotype‐by‐environment interactions (GxE) for laying date, yet differences in GxE were marginally nonsignificant between HV and WW. For clutch size, we only found significant IxE and GxE in WW but no significant difference between populations. From a multivariate perspective, plasticity in laying date was not correlated with plasticity in clutch size in either population. Our results suggest that generalizations about the form and cause of any response to changing environmental conditions across populations may be difficult.  相似文献   

8.
Warming global temperatures are affecting a range of aspects of wild populations, but the exact mechanisms driving associations between temperature and phenotypic traits may be difficult to identify. Here, we use a 36‐year data set on a wild population of red deer to investigate the causes of associations between temperature and two important components of female reproduction: timing of breeding and offspring size. By separating within‐ versus between‐individual associations with temperature for each trait, we show that within‐individual phenotypic plasticity (changes within a female's lifetime) was entirely sufficient to generate the observed population‐level association with temperature at key times of year. However, despite apparently adequate statistical power, we found no evidence of any variation between females in their responses (i.e. no “IxE” interactions). Our results suggest that female deer show plasticity in reproductive traits in response to temperatures in the year leading up to calving and that this response is consistent across individuals, implying no potential for either selection or heritability of plasticity. We estimate that the plastic response to rising temperatures explained 24% of the observed advance in mean calving date over the study period. We highlight the need for comparable analyses of other systems to determine the contribution of within‐individual plasticity to population‐level responses to climate change.  相似文献   

9.
A modular concept of phenotypic plasticity in plants   总被引:2,自引:0,他引:2  
Based on empirical evidence from the literature we propose that, in nature, phenotypic plasticity in plants is usually expressed at a subindividual level. While reaction norms (i.e. the type and the degree of plant responses to environmental variation) are a property of genotypes, they are expressed at the level of modular subunits in most plants. We thus contend that phenotypic plasticity is not a whole-plant response, but a property of individual meristems, leaves, branches and roots, triggered by local environmental conditions. Communication and behavioural integration of interconnected modules can change the local responses in different ways: it may enhance or diminish local plastic effects, thereby increasing or decreasing the differences between integrated modules exposed to different conditions. Modular integration can also induce qualitatively different responses, which are not expressed if all modules experience the same conditions. We propose that the response of a plant to its environment is the sum of all modular responses to their local conditions plus all interaction effects that are due to integration. The local response rules to environmental variation, and the modular interaction rules may be seen as evolving traits targeted by natural selection. Following this notion, whole-plant reaction norms are an integrative by-product of modular plasticity, which has far-reaching methodological, ecological and evolutionary implications.  相似文献   

10.
Understanding why organisms vary in developmental plasticity has implications for predicting population responses to changing environments and the maintenance of intraspecific variation. The epiphenotype hypothesis posits that the timing of development can constrain plasticity—the earlier alternate phenotypes begin to develop, the greater the difference that can result amongst the final traits. This research extends this idea by considering how life history timing shapes the opportunity for the environment to influence trait development. We test the prediction that the earlier an individual begins to actively interact with and explore their environment, the greater the opportunity for plasticity and thus variation in foraging traits. This research focuses on life history variation across four groups of birds using museum specimens and measurements from the literature. We reasoned that greater phenotypic plasticity, through either environmental effects or genotype-by-environment interactions in development, would be manifest in larger trait ranges (bills and tarsi) within species. Among shorebirds and ducks, we found that species with relatively shorter incubation times tended to show greater phenotypic variation. Across warblers and sparrows, we found little support linking timing of flight and trait variation. Overall, our results also suggest a pattern between body size and trait variation, consistent with constraints on egg size that might result in larger species having more environmental influences on development. Taken together, our results provide some support for the hypothesis that variation in life histories affects how the environment shapes development, through either the expression of plasticity or the release of cryptic genetic variation.  相似文献   

11.
Many adult traits in Drosophila melanogaster show phenotypic plasticity, and the effects of diet on traits such as lifespan and reproduction are well explored. Although plasticity in response to food is still present in older flies, it is unknown how sustained environmental variation affects life‐history traits. Here, we explore how such life‐long fluctuations of food supply affect weight and survival in groups of flies and affect weight, survival and reproduction in individual flies. In both experiments, we kept adults on constant high or low food and compared these to flies that experienced fluctuations of food either once or twice a week. For these ‘yoyo’ groups, the initial food level and the duration of the dietary variation differed during adulthood, creating four ‘yoyo’ fly groups. In groups of flies, survival and weight were affected by adult food. However, for individuals, survival and reproduction, but not weight, were affected by adult food, indicating that single and group housing of female flies affects life‐history trajectories. Remarkably, both the manner and extent to which life‐history traits varied in relation to food depended on whether flies initially experienced high or low food after eclosion. We therefore conclude that the expression of life‐history traits in adult life is affected not only by adult plasticity, but also by early adult life experiences. This is an important but often overlooked factor in studies of life‐history evolution and may explain variation in life‐history experiments.  相似文献   

12.
Phenotypic plasticity is important in the evolution of traits and facilitates adaptation to rapid environmental changes. However, variation in plasticity at the individual level, and the heritable basis underlying this plasticity is rarely quantified for behavioral traits. Alternative behavioral reproductive tactics are key components of mating systems but are not often considered within a phenotypic plasticity framework (i.e., as reaction norms). Here, using lines artificially selected for repeated mating rate, we test for genetic (G × E) sources of variation in reproductive behavior of male Nicrophorus vespilloides burying beetles (including signaling behavior), as well as the role of individual body size, in responsiveness to changes in social environment. The results show that body size influences the response of individuals’ signaling behavior to changes in the social environment. Moreover, there was G × E underlying the responses of males to variation in the quality of social environment experienced (relative size of focal male compared to his rival). This shows that individual variation in plasticity and social sensitivity of signaling behavior can evolve in response to selection on investment in mating behavior, with males selected for high mating investment having greater social sensitivity.  相似文献   

13.
Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges.  相似文献   

14.
Development in many organisms appears to show evidence of sensitive windows—periods or stages in ontogeny in which individual experience has a particularly strong influence on the phenotype (compared to other periods or stages). Despite great interest in sensitive windows from both fundamental and applied perspectives, the functional (adaptive) reasons why they have evolved are unclear. Here we outline a conceptual framework for understanding when natural selection should favour changes in plasticity across development. Our approach builds on previous theory on the evolution of phenotypic plasticity, which relates individual and population differences in plasticity to two factors: the degree of uncertainty about the environmental conditions and the extent to which experiences during development (‘cues’) provide information about those conditions. We argue that systematic variation in these two factors often occurs within the lifetime of a single individual, which will select for developmental changes in plasticity. Of central importance is how informational properties of the environment interact with the life history of the organism. Phenotypes may be more or less sensitive to environmental cues at different points in development because of systematic changes in (i) the frequency of cues, (ii) the informativeness of cues, (iii) the fitness benefits of information and/or (iv) the constraints on plasticity. In relatively stable environments, a sensible null expectation is that plasticity will gradually decline with age as the developing individual gathers information. We review recent models on the evolution of developmental changes in plasticity and explain how they fit into our conceptual framework. Our aim is to encourage an adaptive perspective on sensitive windows in development.  相似文献   

15.
16.
17.
Niche theory is one of the central organizing concepts in ecology. Generally, this theory defines a given species niche as all of the factors that effect the persistence of the species as well as the impact of the species in a given location ( Hutchinson 1957 ; Chase 2011 ). Many studies have argued that phenotypic plasticity enhances niche width because plastic responses allow organisms to express advantageous phenotypes in a broader range of environments ( Bradshaw 1965 ; Van Valen 1965 ; Sultan 2001 ). Further, species that exploit habitats with fine‐grained variation, or that form metapopulations, are expected to develop broad niche widths through phenotypic plasticity ( Sultan & Spencer 2002 ; Baythavong 2011 ). Although a long history of laboratory, greenhouse and reciprocal transplant experiments have provided insight into how plasticity contributes to niche width ( Pigliucci 2001 ), recent advances in molecular approaches allow for a mechanistic understanding of plasticity at the molecular level ( Nicotra et al. 2010 ). In particular, variation in epigenetic effects is a potential source of the within‐genotype variation that underlies the phenotypic plasticity associated with broad niche widths. Epigenetic mechanisms can alter gene expression and function without altering DNA sequence ( Richards 2006 ) and may be stably transmitted across generations ( Jablonka & Raz 2009 ; Verhoeven et al. 2010 ). Also, epigenetic mechanisms may be an important component of an individual’s response to the environment ( Verhoeven et al. 2010 ). While these ideas are intriguing, few studies have made a clear connection between genome‐wide DNA methylation patterns and phenotypic plasticity (e.g. Bossdorf et al. 2010 ). In this issue of Molecular Ecology, Herrera et al. (2012) present a study that demonstrates epigenetic changes in genome‐wide DNA methylation are causally active in a species’ ability to exploit resources from a broad range of environments and are particularly important in harsh environments.  相似文献   

18.
Tree species differences in crown size and shape are often highlighted as key characteristics determining light interception strategies and successional dynamics. The phenotypic plasticity of species in response to light and space availability suggests that intraspecific variability can have potential consequences on light interception and community dynamics. Species crown size varies depending on site characteristics and other factors at the individual level which differ from competition for light and space. These factors, such as individual genetic characteristics, past disturbances or environmental micro-site effects, combine with competition-related phenotypic plasticity to determine the individual variability in crown size. Site and individual variability are typically ignored when considering crown size and light interception by trees, and residual variability is relegated to a residual error term, which is then ignored when studying ecological processes. In the present study, we structured and quantified variability at the species, site, and individual levels for three frequently used tree allometric relations using fixed and random effects in a hierarchical Bayesian framework. We focused on two species: Abies alba (silver fir) and Picea abies (Norway spruce) in nine forest stands of the western Alps. We demonstrated that species had different allometric relations from site to site and that individual variability accounted for a large part of the variation in allometric relations. Using a spatially explicit radiation transmission model on real stands, we showed that individual variability in tree allometry had a substantial impact on light resource allocation in the forest. Individual variability in tree allometry modulates species’ light-intercepting ability. It generates heterogeneous light conditions under the canopy, with high light micro-habitats that may promote the regeneration of light-demanding species and slow down successional dynamics.  相似文献   

19.
A Forsman 《Heredity》2015,115(4):276-284
Much research has been devoted to identify the conditions under which selection favours flexible individuals or genotypes that are able to modify their growth, development and behaviour in response to environmental cues, to unravel the mechanisms of plasticity and to explore its influence on patterns of diversity among individuals, populations and species. The consequences of developmental plasticity and phenotypic flexibility for the performance and ecological success of populations and species have attracted a comparatively limited but currently growing interest. Here, I re-emphasize that an increased understanding of the roles of plasticity in these contexts requires a ‘whole organism'' (rather than ‘single trait'') approach, taking into consideration that organisms are integrated complex phenotypes. I further argue that plasticity and genetic polymorphism should be analysed and discussed within a common framework. I summarize predictions from theory on how phenotypic variation stemming from developmental plasticity and phenotypic flexibility may affect different aspects of population-level performance. I argue that it is important to distinguish between effects associated with greater interindividual phenotypic variation resulting from plasticity, and effects mediated by variation among individuals in the capacity to express plasticity and flexibility as such. Finally, I claim that rigorous testing of predictions requires methods that allow for quantifying and comparing whole organism plasticity, as well as the ability to experimentally manipulate the level of and capacity for developmental plasticity and phenotypic flexibility independent of genetic variation.  相似文献   

20.
Phenotypic plasticity refers to the ability of an organism to alter its physiology/morphology/behavior in response to changes in environmental conditions. Although encompassing various phenomena spanning multi-ple levels of organization, most plastic responses seem to take place by altering gene expression and eventually altering ontogenetic trajectory in response to environmental variation. Epigenetic modifications provide a plausi-ble link between the environment and alterations in gene expression, and the alterations in phenotype based on environmentally induced epigenetic modifications can be inherited transgenerationally. Even closely related species and populations with different genotypes may exhibit differences in the patterns and the extents of plastic responses, indicating the wide existence of plasticity genes which are independent of trait means and directly respond to environmental stimuli by triggering phenotypic changes. The ability of plasticity is not only able to affect the adaptive evolution of species significantly, but is also an outcome of evolutionary processes. Therefore, phenotypic plasticity is a potentially important molder of adaptation and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号