首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Escherichia coli K30 produces a thermostable group I capsular polysaccharide. Two classes of mutants were isolated with defects in the synthesis or expression of capsule. The most common mutant phenotype was acapsular (K-), with no K-antigen synthesized. A second class of mutants, termed Ki or intermediate forms, produced colonies which were indistinguishable from those of acapsular forms yet K-antigenicity was expressed. Previous studies had demonstrated that E. coli strains that produce K30 antigen synthesize a lipopolysaccharide (LPS) fraction that is recognised by monoclonal antibodies against the K30 antigen. Synthesis of this LPS fraction was not affected in Ki forms. The results of morphological examination, LPS analysis and phage sensitivity studies are consistent with the interpretation that the defect in Ki strains results from an inability to polymerize the K30 antigen. Using plasmid pULB113 (RP4::mini-Mu), mutations resulting in both K- and Ki phenotypes were localized near the his region of the chromosome.  相似文献   

2.
The group 1 K30 antigen from Escherichia coli (O9a:K30) is present on the cell surface as both a capsular structure composed of high-molecular-weight K30 polysaccharide and as short K30 oligosaccharides linked to lipid A-core in a lipopolysaccharide molecule (K30LPS). To determine the molecular processes that are responsible for the two forms of K antigen, the 16 kb chromosomal cps region has been characterized. This region encodes 12 gene products required for the synthesis, polymerization and translocation of the K30 antigen. The gene products include four glycosyltransferases responsible for synthesis of the K30 repeat unit; a PST (1) exporter (Wzx), required to transfer lipid-linked K30 units across the plasma membrane to the periplasmic space; and a K30-antigen polymerase (Wzy). These gene products are typical of those seen in O-antigen biosynthesis gene clusters and they interact with the lipopolysaccharide translocation pathway to express K30LPS on the cell surface. The same gene products also provide the biosynthetic intermediates for the capsule assembly pathway, although they are not in themselves sufficient for synthesis of the K30 capsule. Three additional genes, wza, wzb and wzc, encode homologues to proteins that are encoded by gene clusters involved in expression of a variety of bacterial exopolysaccharides. Mutant analysis indicates that Wza and Wzc are required for wild-type surface expression of the capsular structure but are not essential for polymerization and play no role in the translocation of K30LPS. These surface expression components provide the key feature that distinguishes the assembly systems for O antigens and capsules.  相似文献   

3.
4.
Abstract Monoclonal antibodies of subclasses IgG1 and IgG2b and specific for the O4 antigen of Escherichia coli 20025 (O4 : K12 : H) and the capsular K12 polysaccharide of the same strain (IgM) were obtained with the hybridoma technique using spleen cells from Balb/c mice, immunized with a crude bacterial extract, and Sp2/O-Ag8 myeloma cells. The anti-O4 antibodies reacted exclusively with the O4 lipopolysaccharide and not with those from serologically O-cross reactive E. coli . The anti-K12 antibodies recognized as epitope (part of) the KDO moiety of the capsular K12 polysaccharide. Not only anti-K12, but also anti-O4 antibodies effectively phagoopsonized encapsulated E. coli 20025. The opsonized bacteria were killed in subsequent in vitro phagocytosis by human leokocytes in the presence of human serum complement.  相似文献   

5.
In Escherichia coli K-12, RcsC and RcsB are thought to act as the sensor and effector components, respectively, of a two-component regulatory system which regulates expression of the slime polysaccharide colanic acid (V. Stout and S. Gottesman, J. Bacteriol. 172:659-669, 1990). Here, we report the cloning and DNA sequence of a 4.3-kb region containing rcsC and rcsB from E. coli O9:K30:H12. This strain does not produce colanic acid but does synthesize a K30 (group I) capsular polysaccharide. The rcsB gene from E. coli K30 (rcsBK30) is identical to the rcsB gene from E. coli K-12 (rcsBK-12). rcsCK30 has 16 nucleotide changes, resulting in six amino acid changes in the predicted protein. To examine the function of the rcs regulatory system in expression of the K30 capsular polysaccharide, chromosomal insertion mutations were constructed in E. coli O9:K30:H12 to independently inactivate rcsBK30 and the auxiliary positive regulator rcsAK30. Strains with these mutations maintained wild-type levels of K30 capsular polysaccharide expression and still produced a K30 capsule, indicating that the rcs system is not essential for expression of low levels of the group I capsular polysaccharide in lon+ E. coli K30. However, K30 synthesis is increased by introduction of a multicopy plasmid carrying rcsBK30. K30 polysaccharide expression is also markedly elevated in an rcsBK30-dependent fashion by a mutation in rcsCK30, suggesting that the rcs system is involved in high levels of synthesis. To determine whether the involvement of the rcs system in E. coli K30 expression is typical of group I (K antigen) capsules, multicopy rcsBK30 was introduced into 22 additional strains with structurally different group I capsules. All showed an increase in mucoid phenotype, and the polysaccharides produced in the presence and absence of multicopy rcsBK30 were examined. It is has been suggested that E. coli strains with group I capsules can be subdivided based on K antigen structure. For the first time, we show that strains with group I capsules can also be subdivided by the ability to produce colanic acid. Group IA contains capsular polysaccharides (including K30) with repeating-unit structures lacking amino sugars, and expression of group IA capsular polysaccharides is increased by multicopy rcsBK30. Group IB capsular polysaccharides all contain amino sugars. In group IB strains, multicopy rcsBK30 activates synthesis of colanic acid.  相似文献   

6.
The rfbO9 gene cluster, which is responsible for the synthesis of the lipopolysaccharide O9 antigen, was cloned from Escherichia coli O9:K30. The gnd gene, encoding 6-phosphogluconate dehydrogenase, was identified adjacent to the rfbO9 cluster, and by DNA sequence analysis the gene order gnd-rfbM-rfbK was established. This order differs from that described for other members of the family Enterobacteriaceae. Nucleotide sequence analysis was used to identify the rfbK and rfbM genes, encoding phosphomannomutase and GDP-mannose pyrophosphorylase, respectively. In members of the family Enterobacteriaceae, these enzymes act sequentially to form GDP-mannose, which serves as the activated sugar nucleotide precursor for mannose residues in cell surface polysaccharides. In the E. coli O9:K30 strain, a duplicated rfbM2-rfbK2 region was detected approximately 3 kbp downstream of rfbM1-rfbK1 and adjacent to the remaining genes of the rfbO9 cluster. The rfbM isogenes differed in upstream flanking DNA but were otherwise highly conserved. In contrast, the rfbK isogenes differed in downstream flanking DNA and in 3'-terminal regions, resulting in slight differences in the sizes of the predicted RfbK proteins. RfbMO9 and RfbKO9 are most closely related to CpsB and CpsG, respectively. These are isozymes of GDP-mannose pyrophosphorylase and phosphomannomutase, respectively, which are thought to be involved in the biosynthesis of the slime polysaccharide colanic acid in E. coli K-12 and Salmonella enterica serovar Typhimurium. An E. coli O-:K30 mutant, strain CWG44, lacks rfbM2-rfbK2 and has adjacent essential rfbO9 sequences deleted. The remaining chromosomal genes are therefore sufficient for GDP-mannose formation and K30 capsular polysaccharide synthesis. A mutant of E. coli CWG44, strain CWG152, was found to lack GDP-mannose pyrophosphorylase and lost the ability to synthesize K30 capsular polysaccharide. Wild-type capsular polysaccharide could be restored in CWG152, by transformation with plasmids containing either rfbM1 or rfbM2. Introduction of a complete rfbO9 gene cluster into CWG152 restored synthesis of both O9 and K30 polysaccharides. Consequently, rfbM is sufficient for the biosynthesis of GDP-mannose for both O antigen and capsular polysaccharide E. coli O9:K30. Analysis of a collection of serotype O8 and O9 isolates by Southern hybridization and PCR amplification experiments demonstrated extensive polymorphism in the rfbM-rfbK region.  相似文献   

7.
Coliphage K30 lysates contain free and phage-associated forms of a bacteriophage-encoded capsule depolymerase (glycanase) enzyme, active against the serotype K30 capsular polysaccharide of Escherichia coli. The free glycanase has been purified to apparent homogeneity. The molecular weight of the enzyme was estimated at 450,000, and when heated in SDS at 100 degrees C, the enzyme dissociated into two subunits of 90,000 and 52,000. The glycanase enzyme was used as a reagent to reversibly degrade the capsular layers on cells of Escherichia coli O9:K30 and Klebsiella O1:K20. This treatment rendered these bacteria sensitive to their respective lipopolysaccharide-specific bacteriophages, coliphage O9-1 and Klebsiella phage O1-3. This novel approach facilitated isolation of lipopolysaccharide O antigen side chain deficient mutants which retained the ability to synthesize the capsule. The response of defined mutants, O+:K-, O-:K+, and O-:K-, to exposure to nonimmune rabbit serum was measured. Results showed that the primary barrier against complement-mediated serum killing in both Escherichia coli O9:K30 and Klebsiella O1:K20 was the O antigen side chains of the lipopolysaccharide molecules. In both strains, the capsule played no role in the determination of serum resistance.  相似文献   

8.
Most of the his+ hybrids from crosses between the Escherichia coli donor Hfr45(O8:K27) and different E. coli O9 recipients expressed the donor O8 antigen specificity and produced the capsular antigen K27. Therefore these hybrids must have inherited the his-linked donor rfb region determining the synthesis of O8- specific polysaccharides as well as his-linked genes involved in K27 antigen synthesis. In the living state these hybrids were inagglutinable in O8 antiserum like the donor cells. However, when E. coli K12 and O8:K42- were used as recipients most of the his+ hybrids were agglutinable in O8 and K27 antisera. The amounts of K27 antigen present in these hybrids, designated as K27i (intermediate) forms, were sufficient to evoke the production of K27 antibodies in rabbits, but insufficient to inhibit O-agglutination of the respective cells. The additional transfer of the trp region of E. coli O8:K27 into such K27i forms frequently resulted in O-inagglutinable K27+ hybrids. This is attributed to the introduction of trp-linked genes which apparently play a role in the synthesis of K27 capsular antigen. Tus it is concluded that at least two gene loci, one close to his and the other close to trp, are required for the synthesis of the complete capsular antigen K27.  相似文献   

9.
The structure of the capsular polysaccharide from Escherichia coli O9:K28(A):H- (K28 antigen) has been determined by using the techniques of methylation, periodate oxidation, and partial hydrolysis. N.m.r. spectroscopy (1H and 13C) was used to establish the nature of the anomeric linkages. O-Acetyl groups were determined spectrophotometrically and were located using methyl vinyl ether as a protective reagent. The polysaccharide is comprised of repeating units of the tetrasaccharide shown (three-plus-one type) with 70% of the fucosyl residues carrying an O-acetyl substituent. (formula; see text) This structure resembles that of E. coli K27 and has the structural pattern of Klebsiella K54 polysaccharide.  相似文献   

10.
Surface expression of the group 1 K30 capsular polysaccharide of Escherichia coli strain E69 (O9a:K30) requires Wza(K30), a member of the outer membrane auxiliary (OMA) protein family. A mutation in wza(K30) severely restricts the formation of the K30 capsular structure on the cell surface, but does not interfere with the biosynthesis or polymerization of the K30 repeat unit. Here we show that Wza(K30) is a surface-exposed outer membrane lipoprotein. Wza(K30) multimers form ring-like structures in the outer membrane that are reminiscent of the secretins of type II and III protein translocation systems. We propose that Wza(K30) forms an outer membrane pore through which the K30-capsular antigen is translocated. This is the first evidence of a potential mechanism for translocation of high molecular weight polysaccharide across the outer membrane. The broad distribution of the OMA protein family suggests a similar process for polysaccharide export in diverse Gram-negative bacteria.  相似文献   

11.
Escherichia coli serotype O9:K(A)30 and Klebsiella O1:K20 produce thermostable capsular polysaccharides or K antigens, which are chemically and serologically indistinguishable. Plasmid pULB113 (RP4::mini-Mu) has been used to mediate chromosomal transfer from E. coli O9:K30 and Klebsiella O1:K20 to a multiply marked, unencapsulated, E. coli K12 recipient. Analysis of the cell surface antigens of the transconjugants confirmed previous reports that the genetic determinants for the E. coli K(A) antigens are located near the his and rfb (O antigen) loci on the E. coli linkage map. The Klebsiella K20 capsule genes were also found to be in close proximity to the his and rfb loci. Electron microscopy revealed significant differences in the structural organization of capsular polysaccharides in these two microorganisms and the morphological differences were also readily apparent in transconjugants expressing the respective K antigens. These results are consistent with the interpretation that at least some of the organizational properties of capsular polysaccharides may be genetically determined, rather than being a function of the outer membrane to which the capsular polysaccharides are ultimately attached.  相似文献   

12.
The structure of the K95 antigenic capsular polysaccharide (K95 antigen) of Escherichia coli O75:K95:H5 was elucidated by determination of the composition, 1H- and 13C-n.m.r. spectroscopy, periodate oxidation, and methylation analysis. The K95 polysaccharide, which contains furanosidic 3-deoxy-D-manno-2-octulosonic acid (KDOf) residues, consists of----3)-beta-D-Rib-(1----8)-KDOf-(2----repeating units, has a molecular weight of approximately 25,000 (approximately 65 repeating units), and is randomly O-acetylated (1 acetyl group per repeating unit at unknown positions).  相似文献   

13.
Abstract Coliphage K30, a bacteriophage specific for strains bearing the Escherichia coli serotype K30 capsular polysaccharide, produced plaques surrounded by extensive haloes, a characteristic of phage which produce capsule depolymerase (glycanase) enzymes. Klebsiella K20, a strain producing a capsular polysaccharide chemically identical to that of E. coli K30, was not lysed by coliphage K30, although the bacteriophage encoded glycanase enzyme did degrade the K20 polysaccharide. Morphologically, coliphage K30 belonged to Bradley group C. The coliphage K30 particle comprised 20 structural polypeptides which varied from 9.5–136 kDa and genomic DNA of 38.7 ± 1.0 kb.  相似文献   

14.
The Escherichia coli K5 capsular polysaccharide [-4)-betaGlcA-(1, 4)-alphaGlcNAc-(1-] is a receptor for the capsule-specific bacteriophage K5A. Associated with the structure of bacteriophage K5A is a polysaccharide lyase which degrades the K5 capsule to expose the underlying bacterial cell surface. The bacteriophage K5A lyase gene (kflA) was cloned and sequenced. The kflA gene encodes a polypeptide with a predicted molecular mass of 66.9 kDa and which exhibits amino acid homology with ElmA, a K5 polysaccharide lyase encoded on the chromosome of E. coli SEBR 3282. There was only limited nucleotide homology between the kflA and elmA genes, suggesting that these two genes are distinct and either have been derived from separate progenitors or have diverged from a common progenitor for a considerable length of time. Southern blot analysis revealed that kflA was not present on the chromosome of the E. coli strains examined. In contrast, elmA was present in a subset of E. coli strains. Homology was observed between DNA flanking the kflA gene of bacteriophage K5A and DNA flanking a small open reading frame (ORF(L)) located 5' of the endosialidase gene of the E. coli K1 capsule-specific bacteriophage K1E. The DNA homology between these noncoding sequences indicated that bacteriophages K5A and K1E were related. The deduced polypeptide sequence of ORF(L) in bacteriophage K1E exhibited homology to the N terminus of KflA from bacteriophage K5A, suggesting that ORF(L) is a truncated remnant of KflA. The presence of this truncated kflA gene implies that bacteriophage K1E has evolved from bacteriophage K5A by acquisition of the endosialidase gene and subsequent loss of functional kflA. A (His)(6)-KflA fusion protein was overexpressed in E. coli and purified to homogeneity with a yield of 4.8 mg per liter of bacterial culture. The recombinant enzyme was active over a broad pH range and NaCl concentration and was capable of degrading K5 polysaccharide into a low-molecular-weight product.  相似文献   

15.
In culture fluid, Klebsiella pneumoniae type 1 Kasuya strain produces polysaccharide exhibiting a strong adjuvant effect. The active substance responsible for the strong adjuvant effect of the polysaccharide is not its acidic polysaccharide fraction (the type-specific capsular antigen) but the neutral polysaccharide fraction. In the present study, a mutant which did not produce the type-specific capsular polysaccharide was isolated from ultraviolet-irradiated cells of K. pneumoniae type 1 Kasuya strain which had been labeled with leucine-requiring marker by selecting unagglutinable cells with the antiserum to the type-specific capsular polysaccharide. Serological tests showed that the type-specific acidic capsular polysaccharide was present neither on the cells surface nor in the culture fluid of the mutant. Electron microscopically, the mutant did not possess any capsular material. On the other hand, nearly an equal amount of neutral polysaccharide antigen was produced in culture fluids of the noncapsulated mutant and the parent strain. The neutral polysaccharide antigen produced by the noncapsulated mutant exhibited the same degree of strong adjuvant effect on antibody response to bovine gammaglobulin in mice as that produced by the parent strain. The relationship between the neutral polysaccharide antigen in culture fluid and the O antigen of K. pneumoniae was discussed.  相似文献   

16.
Individual Escherichia coli strains produce several cell surface polysaccharides. In E. coli E69, the his region of the chromosome contains the rfb (serotype O9 lipopolysaccharide O-antigen biosynthesis) and cps (serotype K30 group IA capsular polysaccharide biosynthesis) loci. Polymorphisms in this region of the Escherichia coli chromosome reflect extensive antigenic diversity in the species. Previously, we reported a duplication of the manC-manB genes, encoding enzymes involved in GDP-mannose formation, upstream of rfb in strain E69 (P. Jayaratne et al., J. Bacteriol. 176:3126-3139, 1994). Here we show that one of the manC-manB copies is flanked by IS1 elements, providing a potential mechanism for the gene duplication. Adjacent to manB1 on the IS1-flanked segment is a further open reading frame (ugd), encoding uridine-5'-diphosphoglucose dehydrogenase. The Ugd enzyme is responsible for the production of UDP-glucuronic acid, a precursor required for K30 antigen synthesis. Construction of a chromosomal ugd::Gm(r) insertion mutation demonstrated the essential role for Ugd in the biosynthesis of the K30 antigen and confirmed that there is no additional functional ugd copy in strain E69. PCR amplification and Southern hybridization were used to examine the distribution of IS1 elements and ugd genes in the vicinity of rfb in other E. coli strains, producing different group IA K antigens. The relative order of genes and, where present, IS1 elements was established in these strains. The regions adjacent to rfb in these strains are highly variable in both size and gene order, but in all cases where a ugd homolog was present, it was found near rfb. The presence of IS1 elements in the rfb regions of several of these strains provides a potential mechanism for recombination and deletion events which could contribute to the antigenic diversity seen in surface polysaccharides.  相似文献   

17.
The primary structure of the K12 antigenic capsular polysaccharide (K12 antigen) of Escherichia coli O4:K12:H- was elucidated by composition, nuclear magnetic resonance spectroscopy, methylation, periodate oxidation and oligosaccharide analysis. The polysaccharide consists of repeating trisaccharide alpha-rhamnosyl-1,2-alpha-rhamnosyl-1,5-dOclA units (dOclA = 2-keto-3-deoxy-D-manno-octonic acid) which are joined through beta-2,3-linkages. About 50% of the dOclA units are O-acetylated at C7 or C8. The sequence of acetylated and non-acetylated dOclA residues is not known. As had been reported before, the polysaccharide is linked to a phosphatidic acid at the reducing end (dOclA) via a phosphodiester bridge. The serologically specific part of the K12 antigen is its polysaccharide moiety.  相似文献   

18.
The structure of the capsular polysaccharide from E. coli O9:K37 (A 84a) has been studied, using methylation analysis, Smith degradation, and graded acid hydrolysis. The configurations at the anomeric centres were assigned by 1H-n.m.r. spectroscopy of the polysaccharide and its derivatives and oligosaccharide fragments. The polysaccharide has the following trisaccharide repeating-unit which is unique in the E. coli series of capsular polysaccharides in possessing a 1-carboxyethylidene group as the sole acidic function. (Formula: see text) E. coli capsular polysaccharides have been classified into seventy-four serotypes. The structures of about twenty of these polysaccharides have been elucidated, one of which, K29, has been reported to contain a 1-carboxyethylidene group. In continuation of a programme aimed at establishing the structural basis for the serology and immunochemistry of the E. coli capsular antigens, we now report on the structure of the capsular polysaccharide from E. coli O9:K37.  相似文献   

19.
Capsular polysaccharide from two strains of Pasteurella haemolytica serotype T15 was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, proved to be very similar in structure to the capsular polysaccharide of P. haemolytica serotype T4 and identical to the previously described K62 (K2ab) capsular polysaccharide of Escherichia coli, and the capsular polysaccharide of Neisseria meningitidis serotype H, i.e. ----(2-glycerol-3)----(phosphate)----(4-alpha-D-galactopyranose -1)---- with partial O-acetylation on the galactose residues. Electron microscopy with Protein A-gold labelled antisera showed that the polysaccharide was peripherally located on the surface of all three organisms. Chemical removal of O-acetyl groups from the polysaccharide yielded a structure identical to that previously described for E. coli K2 (K2a). Both O-acetylated and de-O-acetylated P. haemolytica T15 polymers, when absorbed on to sheep erythrocytes in passive haemagglutination assays, yielded identical antibody titres with sera raised against P. haemolytica T15, E. coli K2 or N. meningitidis H whole cells. De-O-acetylation of the Pasteurella polysaccharide influenced its precipitability with immune sera, but this could not be related to the absence of O-acetyl groups because the non-acetylated E. coli K2 polymer readily precipitated with a line of 'identity' with the acetylated P. haemolytica T15 polymer.  相似文献   

20.
Abstract The genes directing the expression of group II capsules in Escherichia coli are organized into three regions. The central region 2 is type specific and thought to determine the synthesis of the respective polysaccharide, whilst the flanking regions 1 and 3 are common to all group II gene clusters and direct the surface expression of the capsular polysaccharide. In this communication we analyze the involvement of region 1 and 3 genes in the synthesis of the capsular KS polysaccharide. Recombinant E. coli strains harboring all KS specific region 2 genes and having various combinations of region 1 and 3 gene were studied using immunoelectron microscopy. Membranes from these bacteria were incubated with UDP[14C]GlcA and UDPG1cNAc in the absence or presence of KS polysaccharide as an exogenous acceptor. It was found that recombinant strains with only gene region 2 did not produce the K5 polysaccharide. Membranes of such strains did not synthesize the polymer and did not elongate K5 polysaccharide added as an exogenous acceptor. An involvement of genes from region 1 (notably kps C and kps S) and from region 3 (notably kps T) in the K5 polysaccharide synthesis was apparent and is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号