首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mini-hydroponic growing system was employed for seedlings of kudzu vine (Pueraria montana) and contents of isoflavones (daidzein, genistein, daidzin, genistin, and puerarin) from shoot and root parts of seedlings were analyzed quantitatively. In addition, exogenous cork pieces, polymeric adsorbent, XAD-4, and universal elicitor, methyl jasmonate (MeJA), were used to regulate the production of these isoflavones. It was shown that cork pieces up-regulate the production of daidzein and genistein up to seven- and eight-fold greater than the levels obtained for control roots. In contrast, levels of glucosyl conjugates, daidzin and genistin, decrease up to five- and eight-fold, respectively. Cork treatment also induces the excretion of the root isoflavone constituents into the growth medium. Minimal levels of isoflavones are absorbed by the cork pieces. XAD-4 stimulates the production of glucosyl conjugates, daidzin and genistin, in root parts about 1.5-fold greater than that obtained in control roots. These are the highest amounts of daidzin and genistin that are observed (5.101 and 6.759 mg g−1 dry weight, respectively). In contrast to these two adsorbents, MeJA increases the accumulation of isoflavones in shoot rather than in root parts of seedlings, about three- to four-fold over control levels, with the exception of genistein. These studies reveal new observations on the regulation of isoflavone production in hydroponically grown Pueraria montana plants by two adsorbents (cork pieces and XAD-4) and MeJA elicitor.  相似文献   

2.
Fecal bacteria from a healthy individual were screened for the specific bacteria involved in the metabolism of dietary isoflavonoids. Two strains of bacteria capable of producing primary and secondary metabolites from the natural isoflavone glycosides daidzin and genistin were detected. The metabolites were identified by comparison of their HPLC/mass, 1H NMR and UV spectra with those of standard and synthetic compounds. Both Escherichia coli HGH21 and the gram-positive strain HGH6 converted daidzin and genistin to the their respective aglycones daidzein and genistein. Under anoxic conditions, strain HGH6 further metabolized the isoflavones daidzein and genistein to dihydrodaidzein and dihydrogenistein, respectively. The reduction of a double bond between C-2 and C-3 to a single bond was isoflavonoid-specific by strain HGH6, which did not reduce a similar bond in the flavonoids apigenin and chrysin. Strain HGH6 did not further metabolize dihydrodaidzein and dihydrogenistein. This is the first study in which specific colonic bacteria that are involved in the metabolism of daidzin and genistin have been detected.  相似文献   

3.
We have recently reported that dietary intake of soybean isoflavone phytoestrogens resulted in increased oxidation resistance of isolated low density lipoprotein (LDL). In order to explore the underlying mechanisms we designed two types of in vitro experiments. First, we prepared several different isoflavone fatty acid esters to increase their lipid solubility and studied their incorporation into LDL. Second, the oxidation resistance of the isoflavone-containing LDLs was investigated with Esterbauer's 'conjugated diene' method using Cu2+ as prooxidant. Unesterified daidzein and genistein as well as genistein stearic acid esters were incorporated into LDL to a relatively small extent (0.33 molecules per LDL particle, or less) and they did not significantly influence oxidation resistance. The oleic acid esters of isoflavones were incorporated more effectively, reaching a level of 2.19 molecules per LDL particle or more, and the 4',7-O-dioleates of daidzein and genistein exhibited prolongations of lag times by 46% (P<0.05) and 202% (P<0.01), respectively. A smaller but significant increase in lag time (20.5%, P<0.01) was caused by daidzein 7-mono-oleate. In summary, esterification of soybean isoflavones daidzein and genistein with fatty acids at different hydroxyl groups provided lipophilicity needed for incorporation into LDL. Some isoflavone oleic acid esters increased oxidation resistance of LDL following their incorporation.  相似文献   

4.
Daidzein and genistein content of fruits and nuts   总被引:6,自引:0,他引:6  
Dietary phytoestrogens such as the isoflavones daidzein and genistein are thought to protect against chronic diseases that are common in Western societies, such as cancer, osteoporosis, and ischemic heart disease. In addition, there are concerns regarding the deleterious effects of hormone-like compounds, especially with respect to the development of infants. However, there is little information regarding the phytoestrogen content of foods, and therefore epidemiologic investigations of phytoestrogens are limited. As part of a study quantifying the consumption of phytoestrogens, the objective of this work was to assess the daidzein and genistein content of fruits and nuts commonly eaten in Europe. Eighty different fruits and nuts were sampled, prepared for eating, and freeze-dried. Daidzein and genistein were extracted from the dried foods, and the two isoflavones were quantified after hydrolytic removal of any conjugated carbohydrate. Completeness of extraction and any procedural losses of the isoflavones were accounted for using synthetic daidzin (7-O-glucosyl-4'-hydroxyisoflavone) and genistin (7-O-glucosyl-4'5-dihydroxyisoflavone) as internal standards. Of the 80 foods assayed, 43 contained no detectable daidzein or genistein, at a limit of quantification of 1 microg/kg dry weight of food. Nine foods contained more than 100 microg of the two isoflavones combined per kilogram wet weight, and 28 contained less than this amount. Currants and raisins were the richest sources of the isoflavones, containing 2,250 microg and 1,840 microg of the two isoflavones combined per kilogram of wet weight of food. Although fruits and nuts are not as rich in isoflavone phytoestrogens as are soy and other legumes, this is the first documentation of levels of daidzein and genistein occurring in these foods.  相似文献   

5.
Chlorination and nitration of soy isoflavones.   总被引:11,自引:0,他引:11  
Diets enriched in soy foods containing a high concentration of isoflavonoids are associated with a decrease in the incidence of several chronic inflammatory diseases. Studies with experimental models of diseases, such as atherosclerosis, suggest that these effects can be ascribed to the biological properties of the isoflavones. Since the isoflavones and tyrosine have structural similarities and modifications to tyrosine by inflammatory oxidants such as hypochlorous acid (HOCl) and peroxynitrite (ONOO(-)) have been recently recognized, we hypothesized that the isoflavones also react with HOCl and ONOO(-). Using an in vitro approach, we demonstrate in the present study that the isoflavones genistein, daidzein, and biochanin-A can be chlorinated and nitrated by these oxidants. These reactions were investigated using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance. In the reaction with HOCl, both mono- and dichlorinated derivatives of genistein and biochanin-A are formed, whereas with daidzein only a monochlorinated derivative was detected. The reaction between genistein or daidzein and ONOO(-) yielded a mononitrated product. However, no nitrated product was detected with biochanin-A. Furthermore, the reaction between genistein and sodium nitrite and HOCl yielded a chloronitrogenistein derivative, as well as a dichloronitrogenistein derivative. These results indicate that the ability of the isoflavones to react with these oxidant species depends on their structure and suggest that they could be formed under conditions where these reactive species are generated under pathological conditions.  相似文献   

6.
Ngo Le-Van 《Phytochemistry》1984,23(5):1204-1205
A new coumestrol glycoside, coumestrin, has been isolated from soybean roots together with its aglycone, coumestrol, and the known isoflavones genistin, genistein, daidzin and daidzein. Their structures were determined by spectroscopic technique (1H NMR, UV, IR, EIMS, CIMS and FDMS) and by some chemical transformations.  相似文献   

7.
Soy isoflavones and other polyphenolics have a number of potentially important beneficial effects on the pro-oxidant aspects of chronic inflammation. The impact of inflammatory cell-specific metabolism of polyphenolics, which can include halogenation and nitration, on the properties of these compounds has not been examined. Using either human neutrophils or differentiated human leukemia cells (HL-60) stimulated with phorbol ester to elicit a respiratory burst, the hypothesis that local generation of reactive oxygen and nitrogen species may metabolize and modify the biological properties of the soy isoflavones was examined. Coincubation of the stimulated cells with genistein or daidzein had no effect on the respiratory burst. Medium from stimulated cells in the presence of the isoflavones and NO(2)(-) increased the inhibition of copper-induced LDL oxidation. Mass spectrometry analysis of this medium revealed that monochlorinated, dichlorinated, and nitrated isoflavones, formed through a myeloperoxidase-dependent mechanism, were present. The consumption of genistein in the presence of cells was both extensive and rapid with > 95% of the genistein converted to either the chlorinated or nitrated metabolites within 30 min. Chemically synthesized 3'-chlorogenistein and 3'-chlorodaidzein increased the inhibition of LDL oxidation by approximately 4-fold and 2-fold over genistein and daidzein, respectively. These results lead to the hypothesis that inflammatory cell-specific metabolism of polyphenolics can modify the properties of these compounds at the local site of inflammation.  相似文献   

8.
Some fat-soluble bioactive substances incorporated into low density lipoprotein (LDL) may be delivered into cells via LDL receptor pathway influencing cellular functions. In this study, we synthesized a number of fat-soluble isoflavone esters and investigated their incorporation into LDL as well as their delivery into U937 cells. Using an artificial transfer system (Celite dispersion), genistein and daidzein oleates and daidzein dilinoleate were efficiently incorporated into LDL with concentrations ranging between 2.7 to 16.9 isoflavone molecules/LDL particle, while much smaller amounts of unesterified isoflavones and genistein stearates were transferred into LDL. LDL containing 7-oleates or 4',7-dioleates of genistein and daidzein significantly reduced U937 cell proliferation by 36-43%. The strongest inhibitory effect was shown by daidzein 4',7-dilinoleate with 93% reduction of cell proliferation. Neither of the 4'-oleates of genistein and daidzein contained in LDLs exhibited antiproliferative effects although they were incorporated into LDL. In summary, we demonstrated that isoflavones made fat-soluble by esterification can be incorporated into LDL in vitro and delivered into cultured U937 cells via the LDL-receptor pathway, reducing the cell proliferation.  相似文献   

9.
The effect of isoflavones on the growth of the human breast carcinoma cell lines, MDA-468 (estrogen receptor negative), and MCF-7 and MCF-7-D-40 (estrogen receptor positive), has been examined. Genistein is a potent inhibitor of the growth of each cell line (IC50 values from 6.5 to 12.0 micrograms/ml), whereas biochanin A and daidzein are weaker growth inhibitors (IC50 values from 20 to 34 micrograms/ml). The isoflavone beta-glucosides, genistin and daidzin, have little effect on growth (IC50 values greater than 100 micrograms/ml). The presence of the estrogen receptor is not required for the isoflavones to inhibit tumor cell growth (MDA-468 vs MCF-7 cells). In addition, the effects of genistein and biochanin A are not attenuated by overexpression of the multi-drug resistance gene product (MCF-7-D40 vs MCF-7 cells).  相似文献   

10.
11.
In order to produce isoflavone aglycosides effectively, a process of isoflavone hydrolysis by Bacillus subtilis natto NTU-18 (BCRC 80390) was established. This process integrates the three stages for the production of isoflavone aglycosides in one single fermenter, including the growth of B. subtilis natto, production of β-glucosidase, deglycosylation of fed isoflavone glycosides. After 8 h of batch culture of B. subtilis natto NTU-18 in 2 L of soy medium, a total of 3 L of soy isoflavone glucoside solution containing 3.0 mg/mL of daidzin and 1.0 mg/mL of genistin was fed continuously over 34 h. The percentage deglycosylation of daidzin and genistin was 97.7% and 94.6%, respectively. The concentration of daidzein and genistein in the broth reached 1,066.8 μg/mL (4.2 mM) and 351 μg/mL (1.3 mM), respectively, and no residual daidzin or genistin was detected. The productivity of the bioconversion of daidzein and genistein over the 42 h of culture was 25.6 mg/L/h and 8.5 mg/L/h, respectively. This showed that this is an efficient bioconversion process for selective estrogen receptor modulator production.  相似文献   

12.
The flavonoid constituents of defatted soybeans were studied. Two kinds of new natural isoflavones and four kinds of isoflavones were isolated by rechromatography on silica gel and Sephadex LH–20 columns of ethyl acetate extracts.

One of the new isoflavones was identified as 6″-O-acetyl daidzin, C23H22O10, by UV, IR, PMR and CMR, and the four kinds of isoflavones were also identified as daidzein, daidzin, genistein and genistin.

High performance liquid chromatography of the ethyl acetate and acetone extracts were carried out, and six main peaks corresponding to the six isoflavones were recognized.

Glycitein and glycitein-7-O-glucoside were not detected in the soybeans.  相似文献   

13.
Soygerm isoflavones were subjected to fermentation by Bifidobacterium breve. Most of isoflavone glycosides (daidzin, glycitin and genistin) in soygerms were deglycosylated to their corresponding isoflavone aglycones (daidzein, glycitein and genistein) within 24 h fermentation. Fermented isoflavones significantly inhibited pancreatic lipase activity in fermentation-time and dosage dependant manner. When fermented isoflavones were orally administered with olive oil to SD rats, the triglyceride (TG) level in plasma after 2 h of ingestion was significantly lower than the control of only olive oil administered group whereas no such significant decrease in plasma TG was observed in unfermented isoflavone administered group. This result indicates that oral administration of fermented isoflavones effectively suppressed absorption of excessive lipid into a body. Addition of either unfermented or fermented soygerm isoflavones effectively inhibited adipocyte differentiation from 3T3-L1 in a dose dependent manner. In conclusion, B. breve successfully converted soygerm isoflavones into their aglycones, and these aglycones were more effective in suppressing lipid absorption as well as adipocytes differentiation than their glycosides.  相似文献   

14.
15.
Genistein and daidzein are isoflavones with well-recognized biological activities. Their glycosidic forms (genistin and daidzin, respectively) are abundant in some plants. In this study, production of β-glucosidase from Penicillium janthinellum NCIM 1171 and its use in the obtaining genistein and daidzein are described. In a response surface methodology (RSM) optimized medium, levels of β-glucosidase under submerged and solid state fermentation conditions were found to be 10.2 ± 0.75 IU/mL and 121 ± 9.3 IU/g, respectively. The supernatants resulting from submerged fermentation were subjected to ion exchange and gel filtration chromatography and the enzyme was purified in a 44.4 fold manner with final recovery of 39.75 %. The β-glucosidase was deduced to be a monomeric protein with a molecular mass of 97.18 kDa. The purified protein showed 46 % sequence coverage matching with β-glucosidase derived from Penicillium sp. ABP88968. The purified enzyme was effective in producing genistein and daidzein from soybean (Glycine max) flour extract with a yield of 92.3 and 95 %, respectively. To the best of our knowledge, this is the first report on the use of a wild type strain of P. janthinellum for the production of genistein and daidzein with high productivity and purity.  相似文献   

16.
17.
A decrease of erythrocyte membrane fluidity can contribute to the pathophysiology of hypertension. Soy products, which are used as alternative therapeutics in some cardiovascular conditions, contain various isoflavones (genistein, daidzein, and their glucosides, genistin and daidzin), which can incorporate cellular membrane and change its fluidity. The aim of this study was to examine the effects of soy extract (which generally corresponds to the soy products of isoflavone composition) on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance spectroscopy and fatty acid spin probes (5-DS and 12-DS), the spectra of which are dependent on membrane fluidity. After being treated with soy extract, erythrocytes showed a significant (P = 0.016) decrease of membrane fluidity near the hydrophilic surface, while there were no significant changes of fluidity in deeper hydrophobic membrane regions. These results suggest that soy products containing high levels of genistein and isoflavone glucosides may not be suitable for use in hypertension because they decrease erythrocyte membrane fluidity.  相似文献   

18.
Several types of isoflavonoid-like immunoreactivity were detected in water-ethanolic extracts from Acca sellowiana (Berg) Burret, Psidium guajava L. and Psidium littorale Raddi (Myrtaceae) leaves. Chromatographic mobility of the immunoreactive substances was compared to that of authentic standards, revealing a spectrum of isoflavonoid metabolites in both genera. Aglycones as well as glycosides were detected, namely daidzin, genistin, daidzein, genistein, formononetin, biochanin A, prunetin, and several incompletely characterized isoflavones. Subsequent HPLC–MS study verified the identities of the main immunoreactive isoflavones and found several others, namely glycitein, glycitin, ononin, sissotrin, including the malonylated and acetylated glucosides. It is concluded that the isoflavonoid metabolic pathway is present in the Myrtaceae family.  相似文献   

19.
Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria   总被引:3,自引:0,他引:3  
Lactobacillus delbrueckii subsp. delbrueckii KCTC 1047, grown in de Man, Rogosa and Sharpe (MRS) or soymilk media, completely hydrolyzed the isoflavone glucosides, genistin and daidzin at 50 g ml–1, into their respective aglycones, genistein and daidzein within 30 min. Other lactic acid bacteria did not produce -glucosidase, the enzyme responsible for the hydrolysis of isoflavone glucosides, when cultured in MRS medium. Glucoside-hydrolyzing activity was induced in some lactic acid bacteria when cultured in soymilk medium. These strains hydrolyzed 70–80% of genistin into genistein and 25–40% of daidzin into daidzein.  相似文献   

20.
Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号