首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Prolonged morphine treatment induces extensive desensitization of the μ-opioid receptor (μOR) which is the G-protein-coupled receptor that primarily mediates the cellular response to morphine. To date, the molecular mechanism underlying this process is unknown. Here, we have used live cell fluorescence imaging to investigate whether prolonged morphine treatment affects the physical environment of μOR, or its coupling with G-proteins, in two neuronal cell lines. We find that chronic morphine treatment does not change the amount of enhanced yellow fluorescence protein (eYFP)-tagged μOR on the plasma membrane, and only slightly decreases its association with G-protein subunits. Additionally, morphine treatment does not have a detectable effect on the diffusion coefficient of eYFP-μOR. However, in the presence of another family member, the δ-opioid receptor (δOR), prolonged morphine exposure results in a significant increase in the diffusion rate of μOR. Number and brightness measurements suggest that μOR exists primarily as a dimer that will oligomerize with δOR into tetramers, and morphine promotes the dissociation of these tetramers. To provide a plausible structural context to these data, we used homology modeling techniques to generate putative configurations of μOR-δOR tetramers. Overall, our studies provide a possible rationale for morphine sensitivity.  相似文献   

2.
An automated docking procedure was used to study binding of a series of δ-selective ligands to three models of the δ-opioid receptor. These models are thought to represent the three ligand-specific receptor conformations. Docking results are in agreement with point mutation studies and suggest that different ligands—agonists and antagonists—may bind to the same binding site under different receptor conformations. Docking to different receptor models (conformations) also suggests that by changing to a receptor-specific conformation, the receptor may open or close different binding sites to other ligands. Figure  Ligands 5 (green) and 6 (orange) in bindingpocket BP1 of the R1 δ-opioid receptor model  相似文献   

3.
Ketamine, a clinically relevant drug, has been shown to enhance opioid-induced analgesia and prevent hyperalgesia. However, the molecular mechanisms involved are not clearly understood. As previous studies found that activation of opioid receptors leads to the phosphorylation of mitogen-activated protein kinases, we investigated whether ketamine could modulate μ-opioid receptor (μOR)-mediated ERK1/2 phosphorylation. We find that acute treatment with ketamine enhances (~2- to 3-fold) the levels of opioid-induced ERK1/2 phosphorylation in recombinant as well as cells endogenously expressing μOR. Interestingly, we find that in the absence of ketamine ERK1/2 signaling is desensitized 10 min after opioid exposure whereas in its presence significant levels (~3-fold over basal) are detected. In addition, ketamine increases the rate of resensitization of opioid-mediated ERK1/2 signaling (15 min in its presence vs. 30 min in its absence). These results suggest that ketamine increases the effectiveness of opiate-induced signaling by affecting multiple mechanisms. In addition, these effects are observed in heterologous cells expressing μOR suggesting a non-NMDA receptor-mediated action of ketamine. Together this could, in part, account for the observed effects of ketamine on the enhancement of the analgesic effects of opiates as well as in the duration of opiate-induced analgesia.  相似文献   

4.
Opioids that stimulate the μ-opioid receptor (MOR1) are the most frequently prescribed and effective analgesics. Here we present a structural model of MOR1. Molecular dynamics simulations show a ligand-dependent increase in the conformational flexibility of the third intracellular loop that couples with the G protein complex. These simulations likewise identified residues that form frequent contacts with ligands. We validated the binding residues using site-directed mutagenesis coupled with radioligand binding and functional assays. The model was used to blindly screen a library of ~1.2 million compounds. From the 34 compounds predicted to be strong binders, the top three candidates were examined using biochemical assays. One compound showed high efficacy and potency. Post hoc testing revealed this compound to be nalmefene, a potent clinically used antagonist, thus further validating the model. In summary, the MOR1 model provides a tool for elucidating the structural mechanism of ligand-initiated cell signaling and for screening novel analgesics.  相似文献   

5.
Desensitization of the µ-opioid receptor (MOR) has been implicated as an important regulatory process in the development of tolerance to opiates. Monitoring the release of intracellular Ca2+ ([Ca2+]i), we reported that [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO)-induced receptor desensitization requires receptor phosphorylation and recruitment of β-arrestins (βArrs), while morphine-induced receptor desensitization does not. In current studies, we established that morphine-induced MOR desensitization is protein kinase C (PKC)-dependent. By using RNA interference techniques and subtype specific inhibitors, PKCε was shown to be the PKC subtype activated by morphine and the subtype responsible for morphine-induced desensitization. In contrast, DAMGO did not increase PKCε activity and DAMGO-induced MOR desensitization was not affected by modulating PKCε activity. Among the various proteins within the receptor signaling complex, Gαi2 was phosphorylated by morphine-activated PKCε. Moreover, mutating three putative PKC phosphorylation sites, Ser44, Ser144 and Ser302 on Gαi2 to Ala attenuated morphine-induced, but not DAMGO-induced desensitization. In addition, pretreatment with morphine desensitized cannabinoid receptor CB1 agonist WIN 55212-2-induced [Ca2+]i release, and this desensitization could be reversed by pretreating the cells with PKCε inhibitor or overexpressing Gαi2 with the putative PKC phosphorylation sites mutated. Thus, depending on the agonist, activation of MOR could lead to heterologous desensitization and probable crosstalk between MOR and other Gαi-coupled receptors, such as the CB1.  相似文献   

6.
Increasing number of publications shows that cannabinoid receptor 1 (CB(1)) specific compounds might act in a CB(1) independent manner, including rimonabant, a potent CB(1) receptor antagonist. Opioids, cannabinoids and their receptors are well known for their overlapping pharmacological properties. We have previously reported a prominent decrease in μ-opioid receptor (MOR) activity when animals were acutely treated with the putative endocannabinoid noladin ether (NE). In this study, we clarified whether the decreased MOR activation caused by NE could be reversed by rimonabant in CB(1) receptor deficient mice. In functional [(35)S]GTPγS binding assays, we have elucidated that 0.1mg/kg of intraperitoneal (i.p.) rimonabant treatment prior to that of NE treatment caused further attenuation on the maximal stimulation of Tyr-d-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO), which is a highly specific MOR agonist. Similar inhibitory effects were observed when rimonabant was injected i.p. alone and when it was directly applied to forebrain membranes. These findings are cannabinoid receptor independent as rimonabant caused inhibition in both CB(1) single knockout and CB(1)/CB(2) double knockout mice. In radioligand competition binding assays we highlighted that rimonabant fails to displace effectively [(3)H]DAMGO from MOR in low concentrations and is highly unspecific on the receptor at high concentrations in CB(1) knockout forebrain and in their wild-type controls. Surprisingly, docking computational studies showed a favorable binding position of rimonabant to the inactive conformational state of MOR, indicating that rimonabant might behave as an antagonist at MOR. These findings were confirmed by radioligand competition binding assays in Chinese hamster ovary cells stably transfected with MOR, where a higher affinity binding site was measured in the displacement of the tritiated opioid receptor antagonist naloxone. However, based on our in vivo data we suggest that other, yet unidentified mechanisms are additionally involved in the observed effects.  相似文献   

7.
A selective κ-opioid receptor agonist might act as a powerful analgesic without the side effects of μ-opioid receptor-selective drugs such as morphine. The eight classes of known κ-opioid receptor agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here we propose a new three-dimensional pharmacophore model that encompasses the κ-activities of all classes, which utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.  相似文献   

8.
《Life sciences》1995,56(15):PL285-PL290
The mechanism of the antinociceptive effect of buprenorphine was assessed by administering selective μ-, μ1-, δ- and κ-opioid receptor antagonists in mice. Intraperitoneal administration of buprenorphine, at doses of 0.3 to 3 mg/kg, produced dose-dependent antinociception in the tail-flick test. The antinociceptive activity of buprenorphine did not result from the activation of κ- or δ-opioid receptors, since treatment with either nor-binaltorphimine, a selective κ-opioid receptor antagonist, or naltrindole, a selective δ-opioid receptor antagonist, was completely ineffective in blocking buprenorphine-induced antinociception. However, the antinociceptive effect of buprenorphine was significantly antagonized by β-funaltrexamine, a selective μ-opioid receptor antagonist. Moreover, selective μ1-opioid receptor antagonists, naloxonazine and naltrexonazine, also significantly antagonized the antinociceptive effect of buprenorphine. Co-administration of κ- and δ-opioid receptor antagonists with the μ-opioid receptor antagonists had no significant effect on the antagonistic profiles of the μ-opioid receptor antagonists on the antinociceptive effect of buprenorphine. These results suggest that buprenorphine acts selectively at μ1-opioid receptors to induce antinociceptive effects in mice.  相似文献   

9.
The δ-opioid receptor (DOR) undergoes ligand-induced downregulation by endosomal sorting complex required for transport (ESCRT)-dependent endocytic trafficking to lysosomes. In contrast to a number of other signaling receptors, the DOR can downregulate effectively when its ubiquitination is prevented. We explored the membrane trafficking basis of this behavior. First, we show that internalized DORs traverse the canonical multivesicular body (MVB) pathway and localize to intralumenal vesicles (ILVs). Second, we show that DOR ubiquitination stimulates, but is not essential for, receptor transfer to ILVs and proteolysis of the receptor endodomain. Third, we show that receptor ubiquitination plays no detectable role in the early sorting of internalized DORs out of the recycling pathway. Finally, we show that DORs undergo extensive proteolytic fragmentation in the ectodomain, even when receptor ubiquitination is prevented or ILV formation itself is blocked. Together, these results are sufficient to explain why DORs downregulate effectively in the absence of ubiquitination, and they place a discrete molecular sorting operation in the MVB pathway effectively upstream of the ESCRT. More generally, these findings support the hypothesis that mammalian cells can control the cytoplasmic accessibility of internalized signaling receptors independently from their ultimate trafficking fate.  相似文献   

10.
Analogues of endomorphin (Dmt-Pro-Xaa-Xaa-NH2) modified at position 4 or at positions 4 and 3, and tripeptides (Dmt-Pro-Xaa-NH2) modified at position 3, with various phenylalanine analogues (Xaa = Trp, 1-Nal, 2-Nal, Tmp, Dmp, Dmt) were synthesized and their effects on in vitro opioid activity were investigated. Most of the peptides exhibited high μ-opioid (MOP) receptor binding affinity (KiMOP = 0.13–0.81 nM), modest MOP-selectivity (Kiδ-opioid (DOP)/KiMOP = 3.5–316), and potent functional MOP agonism (GPI, IC50 = 0.274–249 nM) without DOP and κ-opioid (KOP) receptor agonism. Among them, compounds 7 (Dmt-Pro-Tmp-Tmp-NH2) and 9 (Dmt-Pro-1-Nal-NH2) were opioids with potent mixed MOP receptor agonism/DOP receptor antagonism and devoid of β-arrestin2 recruitment activity. They may offer a unique template for the discovery of potent analgesics that produce less respiratory depression, less gastrointestinal dysfunction and that have a lower propensity to induce tolerance and dependence compared with morphine.  相似文献   

11.
Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of Μ-receptors within specific parts of the nervous system. However, reports on changes in the Μ-opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10-50 mg/kg, subcutaneously) for five days.In vitro tissue autoradiography for localization of Μ-receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of Μ-receptors in the superficial layers of the dorsal horn. This up-regulation of Μ-receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance  相似文献   

12.
Summary We had previously demonstrated that opioid receptors contribute to the induction and expression of behavioral sensitization induced by repeated daily injection with 2.5 mg/kg of methamphetamine for 7 days. Using the same regimen, the present study investigated the alterations in μ-opioid receptor during the induction (on days 2, 5, and 8) and expression (on days 11 and 21) periods of behavioral sensitization. Radioligand binding revealed that the maximal binding of μ-opioid receptor was not changed on days 2 and 5, but down-regulated on day 8. After cessation of drug treatment, the maximal binding of μ-opioid receptor gradually and time-dependently returned to normal level on day 11 and up-regulated on day 21. In contrast, no changes in δ- and κ-opioid receptors were detectable on any given day examined. The potency of DAMGO for [35S]-GTPγS coupling was enhanced on days 2, 5, 11, and 21. Moreover, 1 μM of naltrexone or β-chlornaltrexamine significantly suppressed the basal [35S]-GTPγS coupling on days 2, 11, and 21. These findings indicate enhanced responsiveness and elevated constitutive activity of μ-opioid receptor. In summary, our data clearly demonstrate that alterations in μ-opioid receptor are involved in and may contribute to the sensitization to locomotor stimulating effect of methamphetamine.  相似文献   

13.
Orvinols are potent analgesics that target opioid receptors. However, their analgesic mechanism remains unclear and no significant preference for subtype opioid receptor has been achieved. In order to find new orvinols that target the κ-receptor, comparative 3D–QSAR studies were performed on 26 orvinol analogs using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best predictions for the κ-receptor were obtained with the CoMFA standard model (q 2=0.686, r 2=0.947) and CoMSIA model combined steric, electrostatic, hydrophobic, and hydrogen bond donor/acceptor fields (q 2=0.678, r 2=0.914). The models built were further validated by a test set made up of seven compounds, leading to predictive r 2 values of 0.672 for CoMFA and 0.593 for CoMSIA. The study could be helpful for designing and prepare new category κ-agonists from orvinols.   相似文献   

14.
A novel series of piperazine derivatives exhibits sub-nanomolar binding and enhanced subtype selectivity as δ-opioid agonists. The synthesis and SAR are described as well as the application of computational models to improve in vitro ADME and safety properties suitable for CNS indications, specifically microsomal clearance, permeability, and hERG channel inhibition.  相似文献   

15.
《Life sciences》1994,55(17):PL339-PL344
The effects of δ-receptor antagonists on cocaine- and methamphetamine-induced place preferences were examined in rats. Cocaine- and methamphetamine-induced place preferences were significantly attenuated by naltrindole (NTI: a non-selective δ-opioid receptor antagonist). Furthermore, naltriben (NTB: a selective δ2-opioid receptor antagonist), but not 7-benzylidenenaltrexone (BNTX: a selective δ1-opioid receptor antagonist), attenuated the cocaine- and methamphetamine-induce place preferences. These results suggest that δ-opioid receptors, particularly δ2-opioid receptors, may be involved in the reinforcing effects of cocaine and methamphetamine.  相似文献   

16.

Background

A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the ??2-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with ??-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling.

Results

C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and G??i2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface.

Conclusions

We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer.  相似文献   

17.
《Life sciences》1993,53(7):PL129-PL134
The intracerebroventricular (i.c.v.) injection to mice of antisera directed against different sequences Gi3α, impaired the antinociception produced by the selective ligands of δ opioid receptors DPDPE and [D-Ala2]-Deltorphin II, when studied 24 h later in the tail-flick test. Likewise, the potency of the μ/δ ligands DADLE, etorphine and β-endorphin-(1–31) was also reduced. Antinociception due to the μ-agonists morphine and DAMGO was slightly altered by this treatment. The selective δ antagonist ICI 174864 significantly reduced the antinociceptive activity of these opioids to the same extent observed after giving anti-Gi3α antisera. In animals treated with the antisera, ICI 174864 failed to reduce the antinociceptive effect that remained. It is concluded that Gi3 is the type of transducer protein regulated by δ opioid receptors to produce supraspinal antinociception in mice.  相似文献   

18.
κ-Opioid receptor agonists with high selectivity over the μ-opioid receptor are attractive targets in the development of drugs for pain and pruritus. We previously reported the synthesis of 10α-hydroxy TRK-820 (1). In this study, we elucidated the biological properties of 1 and optimized its 6-acyl unit by modifying our synthetic route. Among the 10α-hydroxy TRK-820 derivatives prepared, 26 showed the most potent κ-opioid agonist activity (EC50 = 0.00466 nM) and excellent selectivity and 22 was the most κ-selective agonist.  相似文献   

19.
《Life sciences》1994,55(6):PL121-PL126
We assessed the effect of diabetes on antinociception produced by intracerebroventricular injection of δ-opioid receptor agonists [D-Pen2,5]enkephalin (DPDPE) and [D-Ala2]deltorphin II. The antinociceptive effect of DPDPE (10 nmol), administered i.c.v., was significantly greater in diabetic mice than in non-diabetic mice. The antinociceptive effect of i.c.v. DPDPE was significantly reduced in both diabetic and non-diabetic mice following pretreatment with 7-benzylidenenaltrexone (BNTX), a selective δ1-opioid receptor antagonist, but not with naltriben (NTB), a selective δ2- opioid receptor antagonist. There were no significant differences in the anticiceptive effect of [D-Ala2]deltorphin II (3 nmol, i.c.v.) in diabetic and non-diabetic mice. Furthermore, the antinociceptive effect of i.c.v. [D-Ala2]deltorphin II was significantly reduced in both diabetic and non-diabetic mice following pretreatment with NTB, but not with BNTX. In conclusion, mice with diabetes are selectively hyper-responsive to supraspinal δ1-opioid receptor-mediated antinociception, but are normally responsive to activation of δ2-opiod receptors.  相似文献   

20.
The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca(2+)-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号