首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Isolation of a non-muscle myosin heavy chain gene from Acanthamoeba   总被引:6,自引:0,他引:6  
We have isolated a non-muscle myosin heavy chain gene from Acanthamoeba castellanii using as a heterologous probe a sarcomeric myosin heavy chain gene from Caenorhabditis elegans. The amoeba genomic clone has been tentatively identified as containing a myosin II heavy chain gene based on hybridization to a 5300-nucleotide RNA species, hybrid selection of a mRNA encoding a 185-kDa polypeptide, specific immunoprecipitation of this polypeptide with antiserum to myosin II, and an exact match between the DNA sequence and a carboxyl-terminal myosin II peptide previously sequenced by protein chemical methods (C?té, G.P., Robinson, E.A., Appella, E., and Korn, E. D. (1984) J. Biol. Chem. 259, 12781-12787). We also sequenced a region of the gene whose deduced amino acid sequence shows strong homology with that region of muscle myosins which is thought to be involved in nucleotide binding. These results indicate that the amoeba genomic clone contains at least 90% of the coding information for the 185-kDa heavy chain polypeptide and that the bulk of the gene contains very little intron DNA. Genomic blots of amoeba DNA probed with a portion of this myosin gene indicate the presence of additional highly related sequences within the amoeba genome.  相似文献   

7.
8.
Mammalian cardiac muscle contains two myosin alkali light chains which are the major isoforms present in either atrial (MLC1A) or ventricular (MLC1V) muscle, and which are different from the fast skeletal muscle isoforms (MLC1F and MLC3F). The atrial isoform is also expressed in fetal skeletal and fetal ventricular muscle, where this isoform is also described as the fetal isoform MLC1emb. We have previously isolated a cDNA clone encoding part of the mouse MLC1A/MLC1emb isoform and have used this clone to demonstrate the identity of MLC1A and MLC1emb in the mouse. To date no information on the amino acid sequence of this mammalian atrial/fetal isoform has been available. Here we present the complete structure and sequence of the mouse MLC1A/MLC1emb gene, together with the predicted amino acid sequence of this isoform. Comparison of the MLC1A/MLC1emb gene and polypeptide with those of MLC1F and MLC1V suggests that MLC1A/MLC1emb and MLC1V were generated from a common ancestral gene. The NH2-terminal region of MLC1A/MLC1emb, thought to be involved in the actomyosin interaction, shows conservation with MLC1V but not with MLC1F suggesting a shared functional domain in these cardiac isoforms. Comparison with the chicken embryonic MLC (L23) suggests that although MLC1A/MLC1emb and L23 show very different patterns of expression, both during development and in the adult, they probably represent the homologous gene in these two species.  相似文献   

9.
10.
We report here the isolation and DNA sequence of a cDNA clone encoding a 252-amino acid non-muscle or cytoskeletal tropomyosin (cTm) isoform from Drosophila. The Drosophila cTm shows considerable homology with vertebrate cTm throughout the middle portion of the molecule. The amino-terminal end of the molecule, however, shows less homology and contains five more amino acids than the equine platelet and human tropomyosins. There is also a proline at position 6 in the Drosophila protein. The carboxyl-terminal 27 amino acids also show little homology with vertebrate non-muscle tropomyosins. This is a region of the molecule that shows considerably diversity among other Drosophila tropomyosins and vertebrate tropomyosins. A comparison of the DNA sequence of the cTm cDNA and a previously reported muscle tropomyosin II cDNA sequence shows regions of identical DNA sequence alternating with regions of nonidentical sequence, suggesting that both mRNAs are produced by alternate splicing of the same gene.  相似文献   

11.
12.
Myosin II is a hexameric protein complex consisting of two myosin heavy chains, two myosin essential light chains and two myosin regulatory light chains. Multiple subunit isoforms exist, allowing great diversity in myosin II composition which likely impacts on its contractile properties. Little is known about the evolutionary origin, expression pattern and function of myosin regulatory light chain (MLC2) isoforms. We analysed the evolutionary relationship between smooth muscle (sm), nonmuscle (nm) and nonmuscle-like (nml) MLC2 genes, which encode three homologous proteins expressed in nonmuscle cells. The three genes arose by successive gene duplication events. The high sequence similarity between the tandemly arranged nm- and nml-MLC2 genes is best explained by gene conversion. Urea/glycerol-polyacrylamide gel electrophoresis and RNA analysis were employed to monitor expression of sm-, nm- and nml-MLC2 in human and mouse cell lines. Conspicuous differences between transformed and non-transformed cells were observed, with sm-MLC2 being suppressed in Ras-transformed cells. Our findings shed light on the evolutionary history of three homologous MLC2 proteins and point to isoform-specific cell growth-related roles in nonmuscle cell myosin II contractility.  相似文献   

13.
We have isolated a cDNA recombinant plasmid (pA29) identified as encoding part of the ventricular muscle myosin light chain MLC1v. This cDNA contains a 300-base pair fragment which under conditions of moderate stringency shows specific hybridization to MLC1v mRNA with no detectable cross-hybridization with the mRNAs encoding the fast skeletal muscle isoforms MLC1F and MLC3F, or the atrial muscle isoform MLC1A. Under these conditions hybridization is seen with an abundant mRNA present in slow skeletal muscle (soleus) which is indistinguishable from ventricular MLC1V mRNA on the basis of size and of thermal stability of hybrids formed with plasmid pA29. The mouse MLC1V and MLC1S proteins are found to co-migrate on two-dimensional gels. We therefore conclude that these isoforms are the same and are encoded by the same mRNA. Analysis of mouse DNA has identified a single region of the genome which hybridizes to this same fragment of pA29. This region has been isolated in a recombinant phage and has been shown to contain a single gene showing homology with MLC1V mRNA by R-loop analysis. We therefore conclude that MLC1V and MLC1S are encoded by a single gene. The pattern of segregation of a restriction fragment length polymorphism identified for this gene between Mus musculus and Mus spretus has been followed in an F1 backcross between these two mouse species. The results show the MLC1V/MLC1S gene to be closely linked to a marker at the distal end of mouse chromosome 9.  相似文献   

14.
F Z Watts  G Shiels    E Orr 《The EMBO journal》1987,6(11):3499-3505
A yeast gene MYO1 that contains regions of substantial sequence homology with the nematode muscle myosin gene (unc54) has been isolated and sequenced. Although the disruption of MYO1 is not lethal, it leads to aberrant nuclear migration and cytokinesis. The 200-kd myosin heavy chain-like protein, the product of MYO1, cross-reacts with anti-nematode myosin heavy chain IgG and is present in wild-type strains but not in strains carrying the disrupted gene. Instead, a truncated polypeptide with a molecular mass of 120 kd can be detected in some myo1 mutants.  相似文献   

15.
16.
17.
Three full-length complementary DNA (cDNA) clones were isolated encoding the skeletal myosin light chain 1 (MLC1; 1237 bp), myosin light chain 2 (MLC2; 1206 bp) and myosin light chain 3 (MLC3; 1079 bp) from the fast white muscle cDNA library of mandarin fish Siniperca chuatsi. The sequence analysis indicated that MLC1 and MLC3 were not produced from differentially spliced messenger RNAs (mRNA) as reported in birds and rodents but were encoded by different genes. The MLC2 encodes 170 amino acids, which include four EF-hand (helix-loop-helix) structures. The primary structures of the Ca(2+)-binding domain were well conserved among the MLC2s of seven other fish species. The ontogenetic expression analysis by real-time PCR showed that the three light-chain mRNAs were first detected in the gastrula stage, and their expression increased from the tail bud stage to the larval stage. All three MLC mRNAs showed longitudinal expression variation in the fast white muscle of S. chuatsi, especially MLC1 which was highly expressed at the posterior area. Taken together, the study provides a better understanding about the MLC gene structure and their expression pattern in muscle development of S. chuatsi.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号