首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Distribution of glucose-6-phosphate dehydrogenase mutations in Southeast Asia   总被引:11,自引:0,他引:11  
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a heterogeneous enzyme abnormality with high frequency in tropical areas. We performed population screening and molecular studies of G6PD variants to clarify their distribution and features in Southeast Asia. A total of 4317 participants (2019 males, 2298 females) from 16 ethnic groups in Myanmar, Lao in Laos, and Amboinese in Indonesia were screened with a single-step screening method. The prevalence of G6PD-deficient males ranged from 0% (the Akha) to 10.8% (the Shan). These G6PD-deficient individuals and 12 G6PD-deficient patients who had been diagnosed at hospitals in Indonesia and Malaysia were subjected to molecular analysis by a combination of polymerase-chain-reaction-based single-strand conformation polymorphism analysis and direct sequencing. Ten different missense mutations were identified in 63 G6PD-deficient individuals (50 hemizygotes, 11 heterozygotes, and 2 homozygotes) from 14 ethnic groups. One missense mutation (1291 G-->A) found in an Indonesian Chinese, viz., G6PD Surabaya, was previously unknown. The 487 G-->A (G6PD Mahidol) mutation was widely seen in Myanmar, 383 T-->C (G6PD Vanua Lava) was specifically found among Amboinese, 871 G-->A (G6PD Viangchan) was observed mainly in Lao, and 592 C-->T (G6PD Coimbra) was found in Malaysian aborigines (Orang Asli). The other five mutations, 95 A-->G (G6PD Gaohe), 1003 G-->A (G6PD Chatham), 1360 C-->T (G6PD Union), 1376 G-->T (G6PD Canton), and 1388 G-->A (G6PD Kaiping) were identified mostly in accordance with distributions reported previously.  相似文献   

2.
Glucose 6-phosphate dehydrogenase is a highly polymorphic enzyme encoded by a human X-linked gene (Xq2.8). This enzyme catalyses the first step of pentose phosphate pathway, that converts glucose 6-phosphate to 6-phosphogluconate with production of NADPH2. G6PD deficiency is the most common human metabolic inborn error affecting more than 400 million people world wide. The main clinical manifestations are acute hemolytic anemia and jaundice, triggered by infection or ingestion of Fava beans or oxidative drugs. A predominant variant of G6PD named Mediterranean is often associated with favism. This has been evident in several countries including Northern coastal provinces of Iran. Other current variants are Chatham and Cosenza. Molecular identification of the most prevalent mutations in G6PD gene was carried out in 71 males and females with G6PD deficiency. They were from Iranian Northern province of Golestan. DNA was extracted from blood samples and analyzed for known G6PD mutation by PCR and restriction fragment length polymorphisms (RFLP) technique. Adapting this method, revealed that Mediterranean mutation at nt 563(C-->T) is predominant in the area (69%) and 26.7% of patients have Chatham mutation at nt 1003(G-->A). Findings indicate a higher prevalence of these mutations, in Golestan compared to Mazandaran (66.2% Mediterranean and 19% Chatham mutation) and Gilan (86.4% Mediterranean and 9.71% Chatham mutations). Cosenza mutation at nt 1376(G-->C), by PCR-RFLP technique was not found among other 3 samples (4.3%). The similarity of these results with mutations in Italy indicates probable existence of a common ancestral origin in the observed populations.  相似文献   

3.
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency has previously been reported among both the black and white populations of Costa Rica. All 28 G6PD A — samples were found to be of the common G6PD A-376G/202Atype. A previously described mutation associated with nonspherocytic hemolytic anemia, G6PD Puerto Limón, was found to be due to a GA transition at nucleotide (nt) 1192, causing a glulys substitution. Mutations in this region of the G6PD molecule seem invariably to be associated with chronic hemolytic anemia. G6PD Santamaria had been described previously in two unrelated white subjects. We found that both did, indeed, have the same mutations. In this variant the AG substitution at nt 376 that is characteristic of G6PD A was present, but an AT mutation at nt 542, apparently superimposed on the ancient G6PD A mutation, resulted in an aspval substitution. Thus, the gain of a negative charge at amino acid 126 was counterbalanced by the loss of a charge at amino acid 181, giving rise to a variant with the G6PD A mutation but with normal electrophoretic mobility.  相似文献   

4.
In a Hawaii Hereditary Anemia Screening Project, 4,984 participants were tested for glucose-6-phosphate dehydrogenase (G6PD) deficiency by a filter paper blood spot fluorescence test. Abnormal samples and suspected heterozygotes were checked by quantitative G6PD assay (normal 4.5 to 14 units/g Hb). G6PD was deficient (< 1.5 units/g Hb) in 188 of 2,155 males; 7 other males had low activity (1.5 to 2.8 units/g Hb). The gene frequency, estimated from males after excluding referred and related cases, was 0.037 for Chinese, 0.134 for Filipinos, and 0.203 for Laotians. Among 2,829 females tested, family data showed 111 females were obliged to be at least heterozygous, regardless of G6PD activity, and 43 others had low G6PD activity. Most heterozygotes probably remained undetected by G6PD screening. In 28 females, activity was under 10%; in another 9 females, activity was < 1.5 units/g Hb. Since only 25 homozygotes would be predicted, this apparent excess of females with deficient activity could be due to unequal X-inactivation in some heterozygotes. DNA analysis by polymerase chain reaction amplification and special analytic procedures revealed 10 different missense mutations in 75 males. The nucleotide 835 AT and 1360 CT transitions were first detected in this Hawaiian Project; we found that the nucleotide 1360 mutation was the most common cause of G6PD deficiency in Filipinos. This is the first report of G6PD screening and analysis of molecular G6PD mutations in Filipino and Laotian populations.  相似文献   

5.
In Gaucher disease patients, over 100 disease-causing mutations have been identified. For identification of the 1504C-->T (R463C) mutation it is common to use PCR-restriction fragmentation analysis using the restriction enzyme MspI. In the present study we investigated the reliability of this approach because accurate determination of genotypes is important in genotype-phenotype correlations. A simple modification, i.e. using the restriction enzyme HphI instead of MspI, revealed that type I and II Gaucher disease patients who had previously been identified as carrying the 1504C-->T mutation in fact carried the 1505G-->A (IVS10(-1)G-->A) mutation. Sequencing of the appropriate fragment confirmed this. The PCR method easily differentiates between these two mutations in Gaucher disease patients, thus circumventing the need for sequencing procedures. The phenotypes of the patients found to be carrying the 1505G-->A mutation are also described.  相似文献   

6.
Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia, an autosomal recessive inherited defect of the urea cycle. Most patients described so far have presented with the classical form of the disease. There are also patients with a mild form of citrullinemia in whom the exact molecular basis and clinical relevance are uncertain. Mutations in the human ASS gene have not yet been described in mildly affected or asymptomatic patients with citrullinemia. The genomic sequence of the human ASS gene is not precisely known making mutation analysis difficult. Here, the entire genomic DNA sequence and mutations in the ASS gene of patients with the classical and mild form of the disease are described. The mutations c.1168G-->A (G390R) and IVS13+5 G-->A and the novel mutation c.323G-->T (R108L) have been found to be associated with classical citrullinemia, whereas the novel mutations c.535T-->G (W179R), and c.1085G-->T (G362V) have been detected on alleles of the mildly affected patients. Thus, mutations found in the human ASS gene of asymptomatic children with biochemical abnormalities and in some cases enzymatically proven citrullinemia have allowed us to classify these cases as ASS-deficient patients. The elucidation of the structure of the human ASS gene has made possible the use of intronic primers for molecular analysis of patients with mild disease and the classical form, and provides another option for prenatal diagnostics in affected families with the severe type.  相似文献   

7.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (P<0.05). It is noteworthy that 24 subjects carrying the Mahidol mutation and two carrying the Kaiping mutation also carried the 1311C>T/IVS11nt93T>C SNPs. Further studies are needed to determine the enzyme levels of the G6PD deficient people and presence of additional G6PD mutations in the study population.  相似文献   

8.
In studying the relationship between genetic abnormalities of red blood cells and malaria endemicity in the Vanuatu archipelago in the southwestern Pacific, we have found that of 1,442 males tested, 98 (6.8%) were G6PD deficient. The prevalence of GdPD deficiency varied widely (0%-39%), both from one island to another and in different parts of the same island, and generally correlated positively with the degree of malaria transmission. The properties of G6PD from GdPD-deficient subjects were analyzed in a subset of 53 samples. In all cases the residual red-blood-cell activity was < 10%. There were three phenotypic patterns. PCR amplification and sequencing of the entire coding region of the G6PD gene showed that the first of these patterns corresponded to G6PD Union (nucleotide 1360C-->T; amino acid 454Arg-->Cys), previously encountered elsewhere. Analysis of samples exhibiting the second pattern revealed two new mutants: G6PD Vanua Lava (nucleotide 383T-->C; amino acid 128Leu-->Pro) and G6PD Namoru (nucleotide 208T-->C; amino acid 70Tyr-->His); in three samples, the underlying mutation has not yet been identified. Analysis of the sample exhibiting the third pattern revealed another new mutant: G6PD Naone (nucleotide 497G-->A; amino acid 166Arg-->His). Of the four mutations, G6PD Union and G6PD Vanua Lava have a polymorphic frequency in more than one island; and G6PD Vanua Lava has also been detected in a sample from Papua New Guinea. G6PD deficiency is of clinical importance in Vanuatu because it is a cause of neonatal jaundice and is responsible for numerous episodes of drug-induced acute hemolytic anemia.  相似文献   

9.
Two severe Class I human glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49) mutations, G6PD(Wisconsin) (nt1177 C-->G, R393G) and G6PD(Nashville) (nt1178 G-->A, R393H), affect the same codon, altering a residue in the dimer interface close to the "structural" NADP+ site. These mutations are predicted to influence interaction with the bound "structural" NADP+, long supposed to be crucial for enzyme stability. Recombinant proteins corresponding to these mutants have been constructed, expressed and purified to homogeneity. Steady-state kinetic parameters of the mutant enzymes were comparable to those of normal human G6PD, indicating that the mutations do not alter catalytic efficiency drastically. However, investigations of thermostability, urea denaturation, protease digestion, and hydrophobic exposure demonstrated that G6PD R393H is less stable than normal G6PD or R393G, and stability was more NADP+-dependent. Apoenzymes were prepared by removal of "structural" NADP+. Again the G6PD(Nashville) protein was markedly less stable, and its dissociation constant for "structural" NADP+ is approximately 500 nM, about 10 times higher than values for R393G (53 nM) and normal G6PD (37 nM). These results, together with structural information, suggest that the instability of the R393H protein, enhanced by the weakened binding of "structural" NADP+, is the likely cause of the severe clinical manifestation observed for G6PD(Nashville). They do not, however, explain the basis of disease in the case of G6PD(Wisconsin).  相似文献   

10.
A novel X-linked mental retardation (XLMR) syndrome was recently identified, resulting from creatine deficiency in the brain caused by mutations in the creatine transporter gene, SLC6A8. We have studied the prevalence of SLC6A8 mutations in a panel of 290 patients with nonsyndromic XLMR archived by the European XLMR Consortium. The full-length open reading frame and splice sites of the SLC6A8 gene were investigated by DNA sequence analysis. Six pathogenic mutations, of which five were novel, were identified in a total of 288 patients with XLMR, showing a prevalence of at least 2.1% (6/288). The novel pathogenic mutations are a nonsense mutation (p.Y317X) and four missense mutations. Three missense mutations (p.G87R, p.P390L, and p.P554L) were concluded to be pathogenic on the basis of conservation, segregation, chemical properties of the residues involved, as well as the absence of these and any other missense mutation in 276 controls. For the p.C337W mutation, additional material was available to biochemically prove (i.e., by increased urinary creatine : creatinine ratio) pathogenicity. In addition, we found nine novel polymorphisms (IVS1+26G-->A, IVS7+37G-->A, IVS7+87A-->G, IVS7-35G-->A, IVS12-3C-->T, IVS2+88G-->C, IVS9-36G-->A, IVS12-82G-->C, and p.Y498) that were present in the XLMR panel and/or in the control panel. Two missense variants (p.V629I and p.M560V) that were not highly conserved and were not associated with increased creatine : creatinine ratio, one translational silent variant (p.L472), and 10 intervening sequence variants or untranslated region variants (IVS6+9C-->T, IVS7-151_152delGA, IVS7-99C-->A, IVS8-35G-->A, IVS8+28C-->T, IVS10-18C-->T, IVS11+21G-->A, IVS12+15C-->T, *207G-->C, IVS12+32C-->A) were found only in the XLMR panel but should be considered as unclassified variants or as a polymorphism (p.M560V). Our data indicate that the frequency of SLC6A8 mutations in the XLMR population is close to that of CGG expansions in FMR1, the gene responsible for fragile-X syndrome.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PD; E.C.1.1.1.49) deficiency is the most common human enzymopathy; more than 300 different biochemical variants of the enzyme have been described. In many parts of the world the Mediterranean type of G6PD deficiency is prevalent. However, G6PD Mediterranean has come to be regarded as a generic term applied to similar G6PD mutations thought, however, to represent a somewhat heterogeneous group. A C----T mutation at nucleotide 563 of G6PD Mediterranean has been identified by Vulliamy et al., and the same mutation has been found by De Vita et al. in G6PD Mediterranean, G6PD Sassari, and G6PD Cagliari. The latter subjects had an additional mutation, at nucleotide 1311, that did not produce a coding change. We have examined genomic DNA of five patients--four of Spanish origin and one of Jewish origin--having enzymatically documented G6PD Mediterranean. All had both the mutation at nucleotide 563 and that at nucleotide 1311. A sixth sample, resembling G6PD Mediterranean kinetically but with a slightly rapid electrophoretic mobility, was designated G6PD Andalus and was found to have a different mutation, a G----A transition at nucleotide 1361, producing an arginine-to-histidine substitution. These studies suggest that G6PD Mediterranean is, after all, relatively homogeneous.  相似文献   

12.
目的:应用PCR-DGGE法和DNA测序分析云南籍G6PD缺乏症患者基因突变类型和特点、方法应用硝基四氮唑蓝(NBT)纸片法进行G6PD缺乏症定性筛查,G6PD/6PGD比值法验证,应用PCR—DGGE法和DNA测序分析46例云南籍G6PD缺乏症患者基因突变类型和特点。结果:46例云南籍G6PD缺乏症样本中有30例经PCR—DGGE法分析G6PDexon12发现有异常电泳条带,DNA测序证实26例(56、52%)为nt-1388G→A,4例(8.7%)nt-1376G→T.而PCR—DGGE法分析G6PDexon2未发现有异常电泳条带的样本出现。结论:(1)nt-1388G→A(56.52%)、nt-1376G→T(8.7%)是云南省主要的基因突变型也是中国人中最常见的两种突变型,揭示中华民族有着共同的起源;(2)所检样本中未发现nt95A→G。(3)应用PCR—DGGE法结合DNA测序检测G6PD缺乏症患者的基因型,阳性检出率高,方法简便、快捷、灵敏、结果准确可靠。  相似文献   

13.
It has been suggested that the allele frequency of thrombophilic mutations is affected by glucose-6-phosphate dehydrogenase (G6PD) deficiency. The prevalence of thrombophilic mutations were studied in sixty G6PD deficient individuals including 57 males and three females with the mean age of 15 ± 3.08 and 110 age and sex matched healthy individuals consisted of 95 males and 15 females with the mean age of 16.19 ± 2.17 from the Kermanshah Province of Iran. Using a combination of PCR-RFLP technique, single strand conformation polymorphism (SSCP) analysis and DNA sequencing polymorphic G6PD mutations were identified. The factor V Leiden, prothrombin G20210A and methylenetetrahydrofolate reductase (MTHFR) C677T were detected by PCR-RFLP method using MnlI, HindIII and HinfI restriction enzymes, respectively. Three mutations, G6PD Mediterranean, G6PD Chatham and G6PD Cosenza were identified in 60 G6PD deficient individuals with highest prevalence of G6PD Mediterranean (91.6%). In G6PD deficient individuals the prevalence of factor V Leiden tended to be higher (5%) compared to healthy individuals (2.7%). The prevalence of prothrombin G20210A mutation in G6PD deficient individuals was 1.7%. However, in normal subjects the prevalence of this mutation was 2.7%. The frequency of T allele in G6PD deficient individuals were insignificantly higher (29.16%) than those in healthy individuals (26.8%). Our finding indicates that the prevalence of factor V Leiden, prothrombin G20210A and MTHFR C677T in G6PD deficient individuals is not statistically different compared to normal subjects and G6PD deficiency is not associated with these thrombophilic mutations in Western Iran.  相似文献   

14.
C S Du  X Ren  L Chen  W Jiang  Y He  M Yang 《Human heredity》1999,49(3):133-138
Glucose-6-phosphate dehydrogenase (G6PD) is the most common human enzymopathy. To date more than 122 mutations in the G6PD gene have been discovered, among which 12 point mutations are found in the Chinese. The 2 most common mutations, G1388A and G1376T, account for more than 50% of mutations representing various regions and ethnic groups in China. Setting up a simple and accurate method for detecting these mutations is not only useful for studying the frequency of the G6PD genotypes, but also for finding new mutations. The purpose of this study was to find a simple, inexpensive and accurate method for detecting these common mutations. The amplification refractory mutation system (ARMS) method was used in this study. Samples from 28 G6PD-deficient males were investigated. The natural and mismatched amplification and restriction enzyme digestion method was used as a standard method to evaluate the nature of the point mutations. Sixteen cases were found carrying the G1388A mutation and 12 the G1376T mutation. Fourteen cases of G1388A and 10 cases of G1376T were confirmed by ARMS. Four cases were not in concordance with the results obtained by the mismatched amplification-restriction enzyme digestion. These 4 cases were then judged by direct PCR sequencing at exon 12. The DNA sequencing data supported the results obtained by ARMS. Thus we concluded that the ARMS is a rapid, simple, inexpensive and accurate method for detecting the most common G6PD gene mutations among the Chinese.  相似文献   

15.
We have previously shown that a S1360F mutation in transmembrane domain 10 (TMD10) of the Pdr5p ABC transporter modulates substrate specificity and simultaneously leads to a loss of FK506 inhibition. In this study, we have constructed and characterized the S1360F/A/T and T1364F/A/S mutations located in the hydrophilic face of the amphipatic Pdr5p TMD10. A T1364F mutation leads to a reduction in Pdr5p-mediated azole and rhodamine 6G resistance. Like S1360F, the T1364F and T1364A mutants were nearly non-responsive to FK506 inhibition. Most remarkably, however, the S1360A mutation increases FK506 inhibitor susceptibility, because Pdr5p-S1360A is hypersensitive to FK506 inhibition when compared with either wild-type Pdr5p or the non-responsive S1360F variant. Hence, the Pdr5p TMD10 determines both azole substrate specificity and susceptibility to reversal agents. This is the first demonstration of a eukaryotic ABC transporter where a single residue change causes either a loss or a gain in inhibitor susceptibility, depending on the nature of the mutational change. These results have important implications for the design of efficient reversal agents that could be used to overcome multidrug resistance mediated by ABC transporter overexpression.  相似文献   

16.
The X-chromosome-linked glucose-6-phosphate dehydrogenase (G6PD) A(+) is a common variant found in about 20% of blacks. The amino acid substitution of Asp in the variant G6PD A(+) for Asn in the normal G6PD B(+) was previously found (A. Yoshida, 1967, Proc. Natl. Acad. Sci. USA 57: 835), but the exact substitution position has not been identified. By screening a DNA library prepared from genomic DNA of a G6PD A(+) male subject, we obtained a genomic clone that contained the mutation site. Characterization of the clone revealed that AT----GC transition occurred in the variant A(+) gene, thus producing the amino acid substitution Asn----Asp at the 142nd position from the NH2 terminus of the enzyme. The nucleotide change created an additional FokI cleavage site in the variant A(+) gene; thus, the FokI fragment type of the variant subjects differed from that of normal B(+) subjects in Southern blot hybridization analysis.  相似文献   

17.
18.
BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature.  相似文献   

19.
We have performed molecular genetic analyses on 160 Brazilian patients diagnosed with cystic fibrosis (CF). Screening of mutations in 320 CF chromosomes was performed through single strand conformation polymorphism (SSCP) and heteroduplex analyses assay followed by DNA sequencing of the 27 exons and exon/intron boundaries of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The frequency of CFTR variants of T-tract length of intron 8 (IVS8 Tn) was also investigated. This analysis enabled the detection of 232/320 CF mutations (72.2%) and complete genotyping of 61% of the patients. The deltaF508 mutation was found in 48.4% of the alleles. Another fifteen mutations (previously reported) were detected: G542X, R1162X, N1303K, R334W, W1282X, G58E, L206W, R553X, 621+1G-->T, V232D, 1717-1G-->A, 2347 delG, R851L, 2789+5G-->A, and W1089X. Five novel mutations were identified, V201M (exon 6a), Y275X (exon 6b), 2686 insT (exon 14a), 3171 delC (exon 17a), and 3617 delGA (exon 19). These results contribute to the molecular characterization of CF in the Brazilian population. In addition, the identification of the novel mutation Y275X allowed prenatal diagnosis in a high-risk fetus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号