首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The class A scavenger receptor (SR-A) binds modified lipoproteins and has been implicated in cholesterol ester deposition in macrophages. The SR-A also contributes to cellular adhesion. Using SR-A(+/+) and SR-A(-)/- murine macrophages, we found SR-A expression important for both divalent cation-dependent and -independent adhesion of macrophages to the human smooth muscle cell extracellular matrix. The SR-A mediated 65 and 85% of macrophage adhesion to the extracellular matrix in the presence and absence of serum, respectively. When EDTA was added to chelate divalent cations, the SR-A mediated 90 and 95% of the macrophage adhesion without and with serum, respectively. SR-A-mediated adhesion to the extracellular matrix was prevented by fucoidin, an SR-A antagonist. Biglycan and decorin, proteoglycans of the extracellular matrix, were identified as SR-A ligands. Compared with control cells, Chinese hamster ovary cells expressing the SR-A showed 5- and 6-fold greater cell association (binding and internalization) of (125)I-decorin and -biglycan, respectively. In competition studies, unlabeled proteoglycan or fucoidin competed for binding of (125)I-labeled decorin and -biglycan, and biglycan and decorin competed for the SR-A-mediated cell association and degradation of (125)I-labeled acetylated LDL, a well characterized ligand for the SR-A. These results suggest that the SR-A could contribute to the adhesion of macrophages to the extracellular matrix of atherosclerotic plaques.  相似文献   

2.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

3.
Evidence for a functional role for extracellular matrix (ECM) proteins in adipose tissue is demonstrated in dynamic changes in expression of ECM genes during adipocyte differentiation and in obesity. Components of the ECM may regulate adipose cell number expansion by restricting pre-adipocyte proliferation, regulating apoptosis and inhibiting adipogenesis. Although pre-adipocytes express multiple proteoglycans, their role in pre-adipocyte proliferation up to now has remained unknown. The study described here was conducted to characterize roles of small leucine-rich proteoglycans (SLRPs) in adipocyte proliferation. Pre-adipocytes were seeded on plates coated with biglycan and decorin and were allowed to differentiate. In addition, pre-adipocytes were incubated on plates coated with biglycan, decorin, or fibronectin and measurements were made of cell proliferation and apoptosis. We are able to report that SLRPs decorin and biglycan did not affect differentiation of our 3T3-L1 cells; however, biglycan and decorin did reduce proliferation of pre-adipocytes, partly by induction of apoptosis. Furthermore, anti-proliferative capabilities of decorin and biglycan were nullified with removal of GAG side-chains suggesting that the chains played key roles in anti-proliferative effects of the SLRPs. We also found that co-treatment of decorin or biglycan with the proteoglycan fibronectin restored normal proliferation, an indication that multiple ECM proteins may act in concert to regulate overall proliferation rates of pre-adipocytes. These studies indicate that SLRPs may compose a regulatory factor in adipose tissue expansion, through hyperplasia.  相似文献   

4.
Extracellular matrix glycoproteins and proteoglycans bind a variety of growth factors and cytokines thereby regulating matrix assembly as well as bone formation. However, little is known about the mechanisms by which extracellular matrix molecules modulate osteogenic stem cells and bone formation. Using mice deficient in two members of the small leucine-rich proteoglycans, biglycan and decorin, we uncovered a role for these two extracellular matrix proteoglycans in modulating bone formation from bone marrow stromal cells. Our studies showed that the absence of the critical transforming growth factor-beta (TGF-beta)-binding proteoglycans, biglycan and decorin, prevents TGF-beta from proper sequestration within the extracellular matrix. The excess TGF-beta directly binds to its receptors on bone marrow stromal cells and overactivates its signaling transduction pathway. Overall, the predominant effect of the increased TGF-beta signaling in bgn/dcn-deficient bone marrow stromal cells is a "switch in fate" from growth to apoptosis, leading to decreased numbers of osteoprogenitor cells and subsequently reduced bone formation. Thus, biglycan and decorin appear to be essential for maintaining an appropriate number of mature osteoblasts by modulating the proliferation and survival of bone marrow stromal cells. These findings underscore the importance of the micro-environment in controlling the fate of adult stem cells and reveal a novel cellular and molecular basis for the physiological and pathological control of bone mass.  相似文献   

5.
Growth on a decorin matrix results in decreased human airway smooth muscle cell (HASMC) number, by decreasing proliferation and increasing apoptosis. We questioned whether these effects were related to abnormal extracellular matrix (ECM)-cell adhesion. HASMCs were seeded on decorin, biglycan, collagen type I or plastic. Actin organization and focal adhesion formation were assessed by staining for filamentous (F) and globular (G) actin, and vinculin, respectively. Gene expression for focal adhesion proteins, ECM molecules and HASMC receptors was measured. Protein levels for fibronectin, α(2), α(5), α(v) and β(3) integrin subunits and, focal adhesion kinase (FAK) were assessed. F-actin filaments were prominent in cells seeded on collagen I and plastic, less apparent in cells cultured on biglycan and faint in cells on decorin. Vinculin clustering was decreased in cells seeded on decorin and biglycan, as was vinculin gene expression. Compared to cells on plastic, cells on decorin had an increase in fibronectin gene expression. Seeding on decorin caused an increase in α(2) integrin subunit and platelet-derived growth factor receptor A gene expression. There was also an increase in α(2) and α(v) integrin subunit protein. Finally, FAK protein levels in cells seeded on decorin or biglycan were decreased compared to cells seeded on plastic or collagen I. Cells grown on proteoglycan matrices demonstrate evidence of abnormalities during many of the key processes involved in normal cell adhesion. Upregulation of cell surface receptor proteins, such as α(2) integrin subunit, may represent a compensatory mechanism to overcome poor adhesion induced by growth on these matrices.  相似文献   

6.
Extravillous trophoblast (EVT) cells of the human placenta progressively lose their proliferative activity in situ as EVT cell columns migrate into and invade the decidua. It remains unclear whether this is due to a terminal differentiation of EVT cells along the invasive pathway with concomitant loss of proliferative ability, or a negative regulation by decidua-derived factors, or both mechanisms. Our earlier studies provided evidence for a negative regulation by a decidua-derived factor, transforming growth factor (TGF)-beta, which inhibited proliferation, migration, and invasiveness of first-trimester EVT cells in vitro. We further discovered that decidua also produces decorin, a proteoglycan that binds TGF-beta (and in some cases, inactivates TGF-beta), which is colocalized with TGF-beta in the decidual extracellular matrix. The present study used in vitro-propagated EVT cell lines to examine whether EVT cells retain their capacity for proliferation after the process of invasion; and whether decorin exerts any effect on EVT cell proliferation, migration, or invasiveness in a TGF-beta-dependent or TGF-beta-independent manner. We also examined whether trophoblastic cancer (choriocarcinoma) JAR and JEG-3 cells responded to decorin in a similar manner. Proliferation was measured using a colorimetric (MTT) cellularity assay and immunolabeling for the Ki-67 proliferation marker. Migration and invasiveness were measured in transwells by the ability of cells to cross 8-microm pores of polycarbonate membranes in the absence or presence of an additional matrigel barrier. These experiments revealed three points. First, EVT cells retained limited but significant proliferative ability in vitro after invading matrigel. Second, that decorin alone blocked EVT cell proliferation in a dose-dependent manner. This effect remained unaffected in an additional presence of TGF-beta, which exerted antiproliferative effects on its own. The antiproliferative effect of decorin was explained by an up-regulation of the p21 protein. Third, that decorin alone or TGF-beta alone exerted antimigratory and anti-invasive effects on EVT cells, but the addition of TGF-beta to decorin did not alter decorin action. And fourth, that choriocarcinoma cells were resistant to antiproliferative, antimigratory, and anti-invasive effects of decorin. These results suggest 1) that the invasive function of EVT cells is not associated with a terminal differentiation into a noncycling state; 2) that proliferation, migration, and invasiveness of EVT cells within the decidua are independently controlled by two decidual products, TGF-beta and decorin (decorin in the decidual extracellular matrix may serve as a storage mechanism for TGF-beta in an inactive state and may be activated by EVT cell proteolytic mechanisms, thus preventing overinvasion); and 3) that choriocarcinoma cells are refractory to negative regulation by both decidua-derived factors.  相似文献   

7.
Matrix metalloproteinases (MMP) have been identified in vulnerable areas of atherosclerotic plaques and may contribute to plaque instability through extracellular matrix degradation. Human metalloelastase (MMP-12) is a macrophage-specific MMP with broad substrate specificity and is capable of degrading proteins found in the extracellular matrix of atheromas. Despite its potential importance, little is known about the regulation of MMP-12 expression in the context of atherosclerosis. In this study, we report that in human peripheral blood-derived macrophages, MMP-12 mRNA was markedly up-regulated by several pro-atherosclerotic cytokines and growth factors including interleukin-1beta, tumor necrosis factor-alpha, macrophage colony-stimulating factor, vascular endothelial growth factor, and platelet-derived growth factor-BB. In contrast, the pleiotropic anti-inflammatory growth factor transforming growth factor-beta1 (TGF-beta1) inhibited cytokine-mediated induction of MMP-12 mRNA, protein, and enzymatic activity. Analyses of MMP-12 promoter through transient transfections and electrophoretic mobility shift assays indicated that both its induction by cytokines and its inhibition by TGF-beta1 depended on signaling through an AP-1 site at -81 base pairs. Moreover, the inhibitory effect of TGF-beta1 on MMP-12 was dependent on Smad3. Taken together, MMP-12 is induced by several factors implicated in atherosclerosis. The inhibition of MMP-12 expression by TGF-beta1 suggests that TGF-beta1, acting via Smad3, may promote plaque stability.  相似文献   

8.
Oxidized LDL (oxLDL) is known to induce endothelial adhesion molecule and monocyte chemoattractant protein 1 expression and this is thought to be involved in monocyte recruitment into atherosclerotic lesions. oxLDL has also been found to induce macrophage proliferation. The purpose of the present study was to determine whether oxLDL might also have the ability to increase macrophage populations by inhibiting apoptosis. We found that oxLDL caused a dose-dependent inhibition of the apoptosis that occurs in cultured bone marrow-derived macrophages after macrophage colony-stimulating factor (M-CSF) withdrawal without inducing proliferation. Incubation of macrophages with either native LDL or acetylated LDL had no effect on apoptosis. The prosurvival effect of oxLDL was not inhibited by neutralizing antibodies to granulocyte-macrophage colony-stimulating factor, was maintained in mice homozygous for a mutation in the M-CSF gene, and was not due to other secreted cytokines or growth factors. oxLDL caused activation of the mitogen-activated protein kinases ERK1/2 (extracellular signal-regulated kinases 1 and 2) as well as protein kinase B (PKB), a target of phosphatidylinositol 3-kinase (PI 3-kinase). Furthermore, there was phosphorylation of two important prosurvival PKB targets, I-kappaBalpha(Ser-32) and Bad(Ser-136). The MEK inhibitors PD 98059 and U0126 blocked ERK1/2 activation but did not diminish survival. Conversely, the PI 3-kinase inhibitors LY 294002 and wortmannin blocked PKB activation, and the ability of oxidized LDL to promote macrophage survival.Taken together, these results indicate that oxLDL can directly activate a PI 3-kinase/PKB-dependent pathway that permits macrophage survival in the absence of growth factors.  相似文献   

9.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor beta (TGF-beta), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-beta, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-beta1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-beta1. Furthermore, the protein expression of smooth muscle-alpha-actin (alpha-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-beta1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

10.
Decorin is a small leucine-rich proteoglycan that plays a role in control of cell proliferation, cell migration, collagen fibrillogenesis and modulation of the activity of TGF-beta. In the present study, we investigated the effects of decorin on the production of metalloproteinases (MMP-1, -2, -3, -9 and -13), tissue inhibitors of metalloproteinases (TIMP-1, -2) and cytokines (TGF-beta, IL-1beta, IL-4 and TNF-alpha). Decorin was overexpressed in cultured human gingival fibroblasts using adenovirus-mediated gene transfer. Decorin infection resulted in decreased protein levels of MMP-1 and MMP-3 whereas MMP-2 and TIMP-2 secretion was increased. MMP-9, MMP-13 and TIMP-1 were not affected by decorin infection. Cytokine measurements by ELISA showed that decorin overexpression reduced TGF-beta and IL-1beta. In contrast, IL-4 and TNF-alpha levels were markedly increased in decorin-infected cells. These results suggest that decorin could modulate the expression of certain metalloproteinases and their inhibitors, as well as the production of cytokines. Altogether, our data suggest that decorin might play a pivotal role in tissue remodeling by acting on the balance between extracellular matrix synthesis and degradation.  相似文献   

11.
Ethanol-induced macrophage apoptosis: the role of TGF-beta   总被引:2,自引:0,他引:2  
Both clinical and laboratory reports indicate that ethanol addicts are prone to recurrent infections. We hypothesize that ethanol promotes macrophage apoptosis, thus compromising the efficiency of the mononuclear phagocyte system in dealing with infection. We studied the effect of ethanol on macrophage apoptosis. Human monocytes isolated from healthy subjects after an alcohol drinking binge showed enhanced apoptosis (before, 1.2 +/- 0.3% vs after, 28.4 +/- 3.7% apoptotic cells/field). Peritoneal macrophages harvested from ethanol-treated rats also showed increased (p < 0.0001) apoptosis. DNA isolated from peritoneal macrophages of ethanol-treated rats displayed integer multiples of 200 base pairs (ladder pattern). Furthermore, macrophages harvested from ethanol-treated rats had an enhanced expression as well as accumulation of TGF-beta. In in vitro studies, ethanol promoted apoptosis of human monocytes as well as rat peritoneal macrophages. In addition, ethanol enhanced apoptosis of murine macrophages (J774) in a time-dependent manner. The ethanol-induced apoptosis was amplified by LPS and partly attenuated (p < 0.001) by anti-TGF-beta Ab. TGF-beta also promoted macrophage apoptosis in a dose-dependent manner. Moreover, ethanol enhanced TGF-beta protein production by macrophages. These results indicate that ethanol promotes macrophage apoptosis. This effect of ethanol seems to be partly mediated through the generation of TGF-beta by macrophages.  相似文献   

12.
13.
Fibroblasts play an important role in reparative and inflammatory processes by synthesizing extracellular matrix components and releasing growth factors and cytokines. Fibroblast apoptosis has been observed at the termination phase of reparative or fibrotic responses, but its regulation in this context is poorly known. We investigated the susceptibility of human dermal fibroblasts (DF) to Fas-induced apoptosis and its regulation by extracellular factors potentially involved in immune-mediated inflammation and repair. DF expressed all components of the Fas apoptotic pathway: surface Fas, Fas-associated protein with death domain, and caspase-8 proteins. However, Fas activation resulted in caspase-8 activation and apoptosis only in the presence of cycloheximide (CHX). DF constitutively expressed Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein (FLIP) that was drastically down-regulated by CHX. Exogenous growth factors, cytokines, and adherence to the extracellular matrix shifted the balance of FLIP-caspase-8 proteins and modified the susceptibility of DF to Fas- or Fas-CHX-induced apoptosis. Short-term serum deprivation, suspension culture, and pretreatment with IFN-gamma or TNF-alpha increased, whereas long-term serum-free culture and pretreatment with TGF-beta or IL-10 decreased the apoptotic susceptibility of DF. Surface Fas expression was only modified by TNF-alpha and IFN-gamma, whereas all studied factors modified FLIP-caspase-8 protein expression, consistently with their pro- or antiapoptotic effects. Antisense FLIP oligonucleotides prevented resistance to Fas-induced apoptosis in DF. FLIP-caspase-8 balance seems tightly regulated in fibroblasts by extracellular factors that determine their susceptibility to Fas- or Fas-CHX-induced apoptosis. Th1 and Th regulatory cytokines display opposite effects on fibroblast apoptosis that suggest that their pro- or antifibrotic effects involve direct effects on fibroblast survival.  相似文献   

14.
Activation of macrophages is important in chronic inflammatory disease states such as atherosclerosis. Proinflammatory cytokines such as interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), or tumor necrosis factor-alpha can promote macrophage activation. Conversely, anti-inflammatory factors such as transforming growth factor-beta1 (TGF-beta1) can decrease proinflammatory activation. The molecular mediators regulating the balance of these opposing effectors remain incompletely understood. Herein, we identify Kruppel-like factor 4 (KLF4) as being markedly induced in response to IFN-gamma, LPS, or tumor necrosis factor-alpha and decreased by TGF-beta1 in macrophages. Overexpression of KLF4 in J774a macrophages induced the macrophage activation marker inducible nitric-oxide synthase and inhibited the TGF-beta1 and Smad3 target gene plasminogen activator inhibitor-1 (PAI-1). Conversely, KLF4 knockdown markedly attenuated the ability of IFN-gamma, LPS, or IFN-gamma plus LPS to induce the iNOS promoter, whereas it augmented macrophage responsiveness to TGF-beta1 and Smad3 signaling. The KLF4 induction of the iNOS promoter is mediated by two KLF DNA-binding sites at -95 and -212 bp, and mutation of these sites diminished induction by IFN-gamma and LPS. We further provide evidence that KLF4 interacts with the NF-kappaB family member p65 (RelA) to cooperatively induce the iNOS promoter. In contrast, KLF4 inhibited the TGF-beta1/Smad3 induction of the PAI-1 promoter independent of KLF4 DNA binding through a novel antagonistic competition with Smad3 for the C terminus of the coactivator p300/CBP. These findings support an important role for KLF4 as a regulator of key signaling pathways that control macrophage activation.  相似文献   

15.
16.
17.
White adipose tissue (WAT) in obese humans is characterized by macrophage accumulation the effects of which on WAT biology are not fully understood. We previously demonstrated that macrophage-secreted factors impair preadipocyte differentiation and induce inflammation, and we described the excessive fibrotic deposition in WAT from obese individuals. Microarray analysis revealed significant overexpression of extracellular matrix (ECM) genes in inflammatory preadipocytes. We show here an organized deposition of fibronectin, collagen I, and tenascin-C and clustering of the ECM receptor alpha5 integrin, characterizing inflammatory preadipocytes. Anti-alpha5 integrin-neutralizing antibody decreased proliferation of these cells, underlining the importance of the fibronectin/integrin partnership. Fibronectin-cultured preadipocytes exhibited increased proliferation and expression of both nuclear factor-kappaB and cyclin D1. Small interfering RNA deletion of nuclear factor-kappaB and cyclin D1 showed that these factors link preadipocyte proliferation with inflammation and ECM remodeling. Macrophage-secreted molecules increased preadipocyte migration through an increase in active/phosphorylated focal adhesion kinase. Gene expression and neutralizing antibody experiments suggest that inhibin beta A, a TGF-beta family member, is a major fibrotic factor. Interactions between preadipocytes and macrophages were favored in a three-dimensional collagen I matrix mimicking the fibrotic context of WAT. Cell-rich regions were immunostained for preadipocytes, proliferation, and macrophages in the vicinity of fibrotic WAT from obese individuals. In conclusion, an inflammatory environment leads to profound modifications of the human preadipocyte phenotype, producing fibrotic components with increased migration and proliferation. This phenomenon might play a role in facilitating the constitution of quiescent preadipocyte pools and eventually in the maintenance and aggravation of increased fat mass in obesity.  相似文献   

18.
Chronic inflammatory diseases are characterized by the persistent presence of macrophages and other mononuclear cells, tissue destruction, cell proliferation, and the deposition of extracellular matrix (ECM). The tissue degradation is mediated, in part, by enhanced proteinase expression by macrophages. It has been demonstrated recently that macrophage proteinase expression can be stimulated or inhibited by purified ECM components. However, in an intact ECM the biologically active domains of matrix components may be masked either by tertiary conformation or by complex association with other matrix molecules. In an effort to determine whether a complex ECM produced by vascular smooth muscle cells (SMC) regulates macrophage degradative phenotype, we prepared insoluble SMC matrices and examined their ability to regulate proteinase expression by RAW264.7 and thioglycollate-elicited peritoneal macrophages. Here we demonstrate that macrophage engagement of SMC-ECM triggers PKC-dependent activation of MAPK(erk1/2) leading to increased expression of cyclooxygenase (COX)-2 and prostaglandin (PG) E(2) synthesis. The addition of PGE(2) to macrophage cultures stimulates their expression of both urokinase-type plasminogen activator and MMP-9, and the selective COX-2 inhibitor NS-398 blocks ECM-induced proteinase expression. Moreover, ECM-induced PGE(2) and MMP-9 expression by elicited COX-2(-/-) macrophages is markedly reduced when compared with the response of either COX-2(+/-) or COX-2(+/+) macrophages. These data clearly demonstrate that SMC-ECM exerts a regulatory role on the degradative phenotype of macrophages via enhanced urokinase-type plasminogen activator and MMP-9 expression, and identify COX-2 as a targetable component of the signaling pathway leading to increased proteinase expression.  相似文献   

19.
There is growing evidence that activated synovial fibroblasts, as part of a complex cellular network, play an important role in the pathogenesis of rheumatoid arthritis. In recent years, significant progress has been made in elucidating the specific features of these fibroblasts. It has been understood that although macrophage and lymphocyte secreted factors contribute to their activation, rheumatoid arthritis synovial fibroblasts (RA-SFs) do not merely respond to stimulation by pro-inflammatory cytokines, but show a complex pattern of molecular changes also maintained in the absence of external stimulation. This pattern of activation is characterized by alterations in the expression of regulatory genes and signaling cascades, as well as changes in pathways leading to apoptosis. These together result in the upregulation of adhesion molecules that mediate the attachment of RA-SFs to the extracellular matrix and in the overexpression of matrix degrading enzymes that mediate the progressive destruction of the joints. In addition, activated RA-SFs exert specific effects on other cell types such as macrophages and lymphocytes. While the initiating step in the activation of RA-SFs remains elusive, several key pathways of RA-SF activation have been identified. However, there is so far no single, specific marker for this phenotype of RA-SF. It appears that activated RA-SFs are characterized by a set of specific properties which together lead to their aggressive behavior.  相似文献   

20.
There is growing evidence that activated synovial fibroblasts, as part of a complex cellular network, play an important role in the pathogenesis of rheumatoid arthritis. In recent years, significant progress has been made in elucidating the specific features of these fibroblasts. It has been understood that although macrophage and lymphocyte secreted factors contribute to their activation, rheumatoid arthritis synovial fibroblasts (RA-SFs) do not merely respond to stimulation by pro-inflammatory cytokines, but show a complex pattern of molecular changes also maintained in the absence of external stimulation. This pattern of activation is characterized by alterations in the expression of regulatory genes and signaling cascades, as well as changes in pathways leading to apoptosis. These together result in the upregulation of adhesion molecules that mediate the attachment of RA-SFs to the extracellular matrix and in the overexpression of matrix degrading enzymes that mediate the progressive destruction of the joints. In addition, activated RA-SFs exert specific effects on other cell types such as macrophages and lymphocytes. While the initiating step in the activation of RA-SFs remains elusive, several key pathways of RA-SF activation have been identified. However, there is so far no single, specific marker for this phenotype of RA-SF. It appears that activated RA-SFs are characterized by a set of specific properties which together lead to their aggressive behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号