首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
2.
In the circulation, most of IGFs are bound to a high molecular mass complex of 150 kDa that consists of IGF-I (or IGF-II), IGFBP-3 and the acid-labile subunit (ALS). Within rat liver, biosynthesis of these components has been localized to different cell populations with hepatocytes as source of ALS and nonparenchymal cells (endothelial and Kupffer cells (KC)) as source of IGFBP-3. In the present study, the regulatory effects of the cAMP analogs dibutyryl-cAMP (db-cAMP) and 8-bromo-cAMP (8-br-cAMP) on IGF-I, ALS, and IGFBP expression were evaluated in primary cultures of rat hepatocytes, KC as well as in cocultures of hepatocytes and KC. In cocultures, biosynthesis of IGFBP-3 and ALS was inhibited dose-dependently by db-cAMP and 8-br-cAMP while that of IGF-I, IGFBP-1, and -4 was stimulated as demonstrated by ligand and Northern blotting. IGFBP-3 expression in primary cultures of pure KC did not respond to cAMP treatment indicating the importance of a cellular interaction between KC and hepatocytes for the decreased IGFBP-3 synthesis. The inhibition of IGFBP-3 in db-cAMP-treated cocultures was due to a decrease of IGFBP-3 mRNA level accompanied by a reduced cellular degradation of IGFBP-3. We conclude that cAMP stimulate the biosynthesis of IGF-I, IGFBP-1, and -4 in cocultures of hepatocytes and KC thereby enabling the formation of binary IGF/IGFBP complexes while the formation of the 150 kDa complex is impaired through downregulation of IGFBP-3 and ALS. This complex regulation may be a prerequisite for the effects of cAMP-dependent hormones on the transfer of IGFs from circulation to peripheral tissues.  相似文献   

3.
4.
5.
6.
Insulin-like growth factor (IGF)-I is a pleiotropic hormone that regulates vascular smooth muscle cell (VSMC) migration, proliferation, apoptosis, and differentiation. These actions are mediated by the IGF-I receptor. How activation of the same receptor by the same ligand leads to these diverse cellular responses is not well understood. Here we describe a novel mechanism specifying VSMC responses to IGF-I stimulation, distinctive for the pivotal roles of local IGF-binding proteins (IGFBPs). The role of local IGFBPs was indicated by comparing the activities of IGF-I and des-1-3-IGF-I, an IGF-I analog with reduced binding affinity to IGFBPs. Compared with IGF-I, des-1-3-IGF-I was more potent in stimulating DNA synthesis but much less potent in inducing directed migration of VSMCs. When the effects of individual IGFBPs were tested, IGFBP-2 and IGFBP-4 were found to inhibit IGF-I-stimulated DNA synthesis and migration. IGFBP-5 had an inhibitory effect on IGF-I-stimulated DNA synthesis, but it strongly potentiated IGF-I-induced VSMC migration. By using a non-IGF-binding IGFBP-5 mutant and an IGF-I-neutralizing antibody, it was demonstrated that IGFBP-5 also stimulates VSMC migration in an IGF-independent manner. This effect of IGFBP-5 was inhibited by soluble heparin and by treating cells with heparinase. Mutation of the heparin-binding motif of IGFBP-5 reduced its migration promoting activity. These findings suggest that local IGFBPs are important determinants of cellular responses to IGF-I stimulation, and a key player in this paradigm is IGFBP-5. IGFBP-5 not only modulates IGF-I actions, but it also stimulates cell migration by interacting with cell-surface heparan sulfate proteoglycans.  相似文献   

7.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

8.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) are a family of six homologous proteins with high binding affinity for IGF-I and IGF-II. Information from NMR and mutagenesis studies is advancing knowledge of the key residues involved in these interactions. IGF binding may be modulated by IGFBP modifications, such as phosphorylation and proteolysis, and by cell or matrix association of the IGFBPs. All six IGFBPs have been shown to inhibit IGF action, but stimulatory effects have also been established for IGFBP-1, -3, and -5. These generally involve a decrease in IGFBP affinity and may require cell association of the IGFBP, but precise mechanisms are unknown. The same three IGFBPs have well established effects that are independent of type I IGF receptor signaling. IGFBP-1 exerts these effects by signaling through alpha(5)beta(1)-integrin, whereas IGFBP-3 and -5 may have specific cell-surface receptors with serine kinase activity. The regulation of cell sensitivity to inhibitory IGFBP signaling may play a role in the growth control of malignant cells.  相似文献   

10.
Human intestinal smooth muscle in culture produces insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3, IGFBP-4, and IGFBP-5, which modulate the effects of IGF-I. This study examined the regulation of IGFBP production by endogenous IGF-I. R3-IGF-I, an agonist unaffected by IGFBPs, elicited concentration-dependent increase in growth, measured by [(3)H]thymidine incorporation, and production of IGFBP-3, IGFBP-4, and IGFBP-5, measured by Western blot. Antagonists of the IGF-I receptor, IGF-I Analog or monoclonal antibody 1H7, elicited concentration-dependent inhibition of growth and decrease in IGFBP-3, IGFBP-4, and IGFBP-5 production, implying that endogenous IGF-I stimulated growth and IGFBP production. R3-IGF-I-induced increase in IGFBP-3, IGFBP-4, and IGFBP-5 production was partially inhibited by a mitogen-activated protein (MAP) kinase or a phosphatidylinositol-3-kinase (PI 3-kinase) inhibitor and abolished by the combination. We conclude that endogenous IGF-I stimulates growth and IGFBP-3, IGFBP-4, and IGFBP-5 production in human intestinal smooth muscle cells. Regulation of IGFBP production by IGF-I is mediated by activation of distinct MAP kinase and PI 3-kinase pathways, the same pathways through which IGF-I stimulates growth.  相似文献   

11.
Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-β stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-β is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal controls. These findings indicate that human HSCs, in their activated phenotype, constitutively produce IGFBPs. IGF-I and TGF-β differentially regulate IGFBP-3, IGFBP-4, and IGFBP-5 expression, which, in turn, may modulate the in vitro and in vivo action of IGF-I. J. Cell. Physiol. 174:240–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Regulation of the production of insulin-like growth factor (IGF)-I, IGF-II, IGF binding proteins (IGFBPs), and their related proteins by various hormones was investigated in primary cultures of rat liver parenchymal and nonparenchymal cells.

Freshly isolated parenchymal cells contained mRNAs of IGF-I, IGF-II, IGFBP-1, IGFBP-4, growth hormone (GH) receptor, and the acid-labile subunit (ALS), which forms a ternary complex with IGF-I and IGFBP-3; however, parenchymal cells did not express the IGFBP-3 gene. In contrast, nonparenchymal cells contained IGFBP-3 mRNA exclusively, as we reported previously [Takenaka et al. Agric. Biol. Chem., 55, 1191–1193 (1991)]. Cultured rat parenchymal cells produced IGF-I, IGFBP-1, and IGFBP-4 prominently. In these cells, secretion of IGF-I and the content of IGF-I mRNA was greatly increased in the presence of GH in the medium. Insulin also increased the production of IGF-I. Secretion of IGFBP-l into the medium was enhanced by treatment with glucagon, dibutyrylcyclic AMP (Bu2cAMP), and dexamethasone (Dex) and these enhancements with glucagon and Dex reflected the increase in its mRNA content. Insulin depressed the secretion of IGFBP-l. The content of IGFBP-4 in the parenchymal cells was increased by insulin, Bu2cAMP, and triiodothyronine (T3), thereby enhancing the production of IGFBP-4 and secretion into the medium. Cultured liver nonparenchymal cells of rats produced IGFBP-1, IGFBP-3, and IGFBP-4. Secretion of IGFBP-l was increased by Bu2cAMP in the medium, that of IGFBP-3 by IGF-I, and that of IGFBP-4 by both IGF-I and Bu2cAMP. Regulation of the production of IGFBP-3 by IGF-I was demonstrated in these investigations.

These results suggest that GH increases production of IGF-I in the parenchymal cells and this IGF-I, in turn, increases the production of IGFBP-3 in nonparenchymal cells. As we found GH also increases ALS production in parenchymal cells, by these mechanisms, GH increases the formation of the ternary complex of IGF-I, IGFBP-3, and ALS. This study clearly demonstrates the interrelationship between parenchymal and nonparenchymal cells in the production of IGF-I and IGFBPs in the liver.  相似文献   

13.
14.
We have found that over one-half of the total cell surface 125I-insulin-like growth factor I (IGF-I) binding to BHK cells represents binding to IGF binding proteins (IGFBPs) rather than to the IGF-I receptor. In addition to a number of secreted IGFBPs, we have now characterized two cell-associated IGFBPs with unique characteristics. The cell-associated IGFBPs have molecular weights of 30,000 (30K) and 25,000 (25K), as determined by the Western ligand blot technique. IGFBP-30K is located at the cell surface and can be readily labeled by affinity cross-linking with 125I-IGF-I. Surface expression of IGFBP-30K increases 5.4 +/- 1.2-fold (n = 11) with serum starvation. This induction is fully evident by 4 h, plateauing by 24 h, and is completely inhibitable by cycloheximide. The fasting-induced increase in IGFBP-30K is inhibited by IGF-I and by des-IGF-I and, to a lesser extent, by insulin. Unlike cell-associated IGFBP-30K, secretion of IGFBP was stimulated (6.8 +/- 0.5-fold, n = 2) by IGF-I, whereas IGFBP secretion was inhibited 54% by insulin. These results demonstrate coordinate regulation of IGFBP by serum starvation and IGF-I, such that at low concentrations of IGF-I, cell surface binding protein increases whereas binding protein secretion decreases. At high concentrations of IGF-I, IGFBP secretion increases and cell surface IGF-I receptor, as well as IGFBP, decreases. Taken together, these regulatory events regulate the availability of IGF-I for biologic signalling.  相似文献   

15.
16.
In this study we report the preparation of a human osteosarcoma cell cDNA library and describe the isolation and sequence determination of a clone encoding the complete sequence of a novel human insulin-like growth factor (IGF)-binding protein (hIGFBP-4). Previous work indicated that hIGFBP-4 is the predominant IGFBP expressed by human osteoblast-like cells, and that IGFBP-4 binds and inhibits the mitogenic activities of IGF-I and IGF-II. Sequence determination revealed that hIGFBP-4 is a unique gene product with significant amino- and carboxy-terminal sequence similarity to three other known IGFBPs. Identical alignment of 18 cysteines in IGFBP-4 and the three other IGFBPs is a key structural feature of this protein family. In vitro studies of human osteoblast-like cells suggest that PTH regulates the expression of hIGFBP-4 and that the PTH effect is mediated through a cAMP mechanism. hIGFBP-4 mRNA was also expressed in skin fibroblasts, and thus, this inhibitory IGFBP could be an important physiological regulator of IGF actions in bone cells and other cell types as well.  相似文献   

17.
During the last decade, involvement of growth hormone (GH), insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied. This review provides an update on the GH, IGF system and their role in ovarian follicular development. In vitro studies and knockout experiments demonstrated an important role of GH in preantral follicle growth and differentiation through their binding with GH receptors, which are located both in the oocyte and follicular somatic tissues. Furthermore, GH stimulates the development of small antral follicles to gonadotrophin-dependent stages, as well as maturation of oocytes. With regard to the IGF system, IGF-I has no effects on primordial follicle development, but both IGF-I and IGF-II stimulate growth of secondary follicles. Depending on the species studies and method used, these proteins have been detected in oocytes and/or somatic cells. In antral follicles, these IGFs stimulate granulosa cell proliferation and steroidogenesis in most mammals. The bioavailability of IGFs is regulated by a family of intrafollicular expressed IGF binding proteins (IGFBPs). Facilitation of IGF can be increased through the activity of specific IGFBP proteases, which degrade the IGF/IGFBP complex, resulting in the production of IGFBP fragments and release of attached IGF.  相似文献   

18.
19.
Insulin-like growth factor binding proteins (IGFBPs) are secreted by several cell types and can modify IGF actions. Mandin-Darby Bovine Kidney (MDBK) cells have been shown to secrete a 34,000 Da form of IGF binding protein whose N-terminal sequence is similar to a form of IGFBP purified from rat BRL-3A cells that has recently been named IGFBP-2. These studies report the complete amino acid sequence of bovine IGFBP-2 and compare its functional properties with human IGFBP-1. The protein is 81% identical to rat IGFBP-2. When compared with both rat IGFBP-2 and human IGFBP-1, the positions of all 18 cysteine residues are conserved. Similarly an RGD sequence is present near the carboxyl terminus in both proteins. IGFBP-2 has a higher affinity for IGF-II than for IGF-I and its affinity for both forms of IGF is greater than for human IGFBP-1. Like IGFBP-1 the protein can enhance the DNA synthesis response of porcine aortic smooth muscle cells to IGF-I; however, IGFBP-2 was much less potent. The maximum potentiation of the IGF-mediated mitogenic response that could be achieved was approximately 42% that of IGFBP-1. This potentiation is dependent upon a factor contained in platelet poor plasma and if this factor is omitted from the incubation medium, IGFBP-2 inhibits DNA synthesis. The purification of IGFBP-2 will allow more detailed comparisons to be made between it and other forms of IGFBPs in physiologic test systems.  相似文献   

20.
Insulin-like growth factor I (IGF-I) is a peptidic growth factor implicated in the proliferation of a wide variety of cell types, and especially endometrial epithelial cells. Its action is modulated by the presence of IGF-binding proteins (IGFBPs) which are secreted by IGF-I target cells. The partition of IGFBPs between cell-associated and soluble form determines the potentiation or the inhibition of IGF-I action. It is commonly accepted that cell-associated IGFBPs potentiate the IGF-I action while the soluble form of IGFBPs has an inhibitory effect. In endometrial adenocarcinoma, IGF-I is involved in tumoral progression and IGFBPs may be key modulators of the IGF-I-induced cell proliferation. Here we showed that the responsiveness of human endometrial adenocarcinoma cells (HEC-IA cell line) to the mitogenic activity of IGF-I was dependent on the pre-incubation conditions. This responsiveness to IGF-I was conditioned by a differential expression of the IGF system components (IGFBPs and IGF-I receptor) and particularly of the IGFBPs. Indeed, the IGF-I-induced proliferation of the HEC-1A cells was attenuated by the presence of cell-associated IGFBPs. Moreover, the IGF-I incubation induced a release of IGFBP-3 in the culture media as the consequence of an interaction between IGF-I and the cell-associated IGFBP-3. This effect was dose-dependent and was associated with the attenuation of the IGF-I action on cellular proliferation. Thus, IGFBP-3 might be initially expressed as a cell-associated form and then released in the interstitial fluid after a direct interaction with IGF-I. Therefore, in HEC-IA endometrial adenocarcinoma cells responsive to IGF-I, the IGFBP-3 is the main binding protein expressed and both soluble and cell-associated forms act as inhibitors of IGF-I-induced cellular proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号